Oxford University Computing Services

Programming in C

L anguages 19.2/2

FREE EBOOKS, NOTES, VIDEOS &
PLACEMENT MATERIAL

For All Companies placement
Material

e, T [| I

P-.-'.'. 4 $ s fe e PEy iy SANE O 5T R .f-.'il.‘l =1l Lot Foas) =y
(AN “ acementclass ~
e j'-l"“"-’_r"l | A S S A B Y B B B B Bl d ol :

s B e 5

For CAT Exam Preparation
Material

=, -
Foml o <

' | I' .('i'i'l r:‘-“. I-ﬂ
W

L

| R ¥ ¥ 8 o
e WA

= [L -t el
i N, - .

cla Qs
e B SN i

P ror GATE Exam Preparation

GATE _ Materiéll

ATa = § of (= = p———

[falTades &k of & = el ol el =

| § o= 4 |} = | C s B - | Rt rﬁi:-.

L i e 0 Sl wl S el
el = k.

For Engineering Books &
Material

= o '\.' . S J(i
(S EIMIMIKS
LSRR, S Bl W W B

Codes of Following
Programming Languages

Language

.
—
s I
pxtent -

n

4 |

L .
nNoN exam

AohvY) i =25
S 3;" ‘lf---':' B S AL R R P B S P

Typographical Conventions
Listed below are the typographical conventions used in this guide.

Names of keys on the keyboard are enclosed in angle brackets; for example <Enter> represents the
Enter (or Return) key.

Two key names enclosed in angle brackets and separated by a dash (for example, <Ctrl/Z>) indicate
that the first key should be held down while the second is pressed; both keys can then be released
together.

Where two or more keys are each enclosed in separate angle brackets (for example,
<Home><Home><Up arrow>) each key in the sequence should be pressed in turn.

Characterstyped in by the user are in lower-case non-bold charactersin typewriter font.

Other options and button names are shown in lower-case non-bold characters in typewriter font.
Pull-down menu options are indicated by the name of the option enclosed in square brackets, for
example[Fil e/ Print] . Tosdecttheoption [Print] fromthe[File] menu: click with the mouse
button on the [Fi | e] menu name; move the cursor to [Print] ; when [Print] is highlighted, click

the mouse button again.

Where menu items or large sections of output are included, they are shown as they would be displayed
on the screen.

Sections marked with a 3 are more advanced and can be omitted on afirst reading.

Programming in C

19.2/2

Contents

1 Introduction
1.1 About this Userguide
1.2 Why use C?

2 An Example C Program

3 Variables and Expressions
3.1 Variable Declaration
3.2 Vaiable Types
3.3 Vaiable Names
34 Assgnment
3.5 Arithmetic Operators
3.6 Increment and Decrement Operators
3.7 Cast Operators
3.8 Bitwise Operators f
3.9 Promotions and Conversions
3.10 Parsing Rules £
3.11 Symbolic Congtants and The Preprocessor

4 |nput and Output
4.1 Formatted Output — printf
4.2 Conversion Specifiers
4.3 Literd Congants
4.4 Formatted Input — scanf
4.5 Character 1/0 — getchar & putchar
4.6 End-of-File

5 Flow of Control
5.1 Relational and Logica Operators
5.2 Conditiond Branching— if
5.3 Conditional Selection— switch
5.4 Iteration — while, for
5.5 Locd Jumps— goto £
5.6 Short Circuit Behaviour F
5.7 Problems
5.8 Declaring Array Variables
59 Initidisng Array Variables

6 Functions
6.1 Building Blocks of Programs
6.2 Return Vaue
6.3 Function Parameters

October 1996

w -

POONN~NOOODWW

[

11
12
13
15
16
17

17
17
18
19
20
21
22
22
23
24

25
25
25
25

OUCS

6.4 Variable Function Parameters
6.5 Function Definition and Declaration
6.6 Function Prototypes

7 Scope, Blocks and Variables
7.1 Blocks and Scope
7.2 Varidble Storage Classes
7.3 Declaration versus Definition
7.4 Initidisation of Variables £

8 Arrays, Pointers and Strings
8.1 Pointers are Addresses
8.2 Pointers are not Integers
8.3 The* and & Operators
8.4 Declaring Pointer Variables
8.5 Pointersand Arrays
8.6 Dynamicaly Szed Arrays
8.7 The NULL Pointer and Pointer to void
8.8 Pointer Arithmetic
8.9 Strings

9 Files
9.1 File Pointers
9.2 Opening aFile
9.3 Program Arguments
9.41/0 Streams £
9.5 Redirection of I/O Streams

10 Structures, Unions and Fields
10.1 Enumerated Types
10.2 Defining New Namesfor Typeswith typedef
10.3 Structures
10.4 Unions £
105 Fidds £

11 More Advanced Topicst
11.1 Comma Operator
11.2 Conditiona Operator
11.3 Name Spaces
11.4 Type Qudifiers
11.5 Functions as Parameters
11.6 Preprocessor Macros
11.7 Assertions

12 Managing C programs
12.1 Separate Compilation
12.2 Conditiond Compilation

OUCS

26
26
27

28
28
29
29
30

31
31
31
31
31
32
33
34
35
35

38
38
38
40
41
41

42
42
43
44
45
46

46
46
a7
a7
a7
48
49
50

51
51
52

October 1996

12.3 Using Projectsin Borland C++
124 Unix and C
12.5 Header filelocations

13 Memory Usage §
13.1 Text Area
13.2 DataArea
13.3 The Stack
134 The Heap
13.5 Possible Problems

14 Candthe IBM PC *
14.1 Memory Organisgtion
14.2 BIOS (Badic I/0 System) Interrupts
14.3 DOS Interrupts
14.4 Dynamic Link Libraries (DLLS)
14.5 Windows Application Programming Interface (API)

15Why C?
15.1 Evolution of the C Language
15.2 C and Operating Systems (esp. Unix)
15.3 Comparison with Pasca And Fortran
15.4 Avallability
15.5 Portability
15.6 Efficiency
15.7 Modular Programming and Libraries
15.8 Applications
15.9 Kernighan & RitchieCvs ANSI C
15.10 Criticisms of C

16 Other Courses of Interest
17 Bibliography
18 Exercises

19 Operator Precedence Table

October 1996

53
53
54

o4
54
55
55
56
56

S7
57
58
61
64
64

65
65
65
66
66
66
66
67
67
68
68

68

68

69

79

OUCS

References

[1]

[2]
[3]
[4]
(3]

[6]
[7]
8]

[9]
[10]

The C Programming Language, Brian Kernighan and Dennis Ritchie, Second Edition, Prentice

Hall, 1988
Writing Solid Code, Steve Maguire, Microsoft Press, 1993
C Traps and Fitfalls, Andrew Koenig, Addison-Wedey, 1989

The Peter Norton Programmer's Guide to the IBM PC, Peter Norton, Microsoft Press, 1985
Rationale for American National Standard for Information Systems — Programming Language

— C (see Bibliography for more details).

Programming with ANSI C, Brian Holmes, DP Publications, 1995
Software Devel opers Kit, Microsoft Press

Mastering C, Anthony Rudd, Wiley-Qed,1994

OUCS Userguides, Oxford University Computing Services.

€9.1/1 Further use of Unix

19.5/1 Programming in C-Exercise solutions

Original Author: Stephen Gough
Revised by: Brevan Miles

Revison History:

CT.C
19.2/1
19.2/2

OUCS

April 1990 Origina publication
April 1994 Second edition
September 1996 Third edition

© Oxford University Computing Services 1996

Although forma copyright is reserved, members of academic
ingtitutions may republish the material in this document subject to due
acknowledgement of the source.

October 1996

19.2/2

Programmingin C

1 Introduction

1.1 About thisUserguide

This userguide was written to complement the OUCS course Programming in C, but
also to serve as a reference to the essential aspects of C. It aims to introduce the C
language to those dready familiar with programming in another language (as covered
on Introduction to programming in Pascal or Introduction to programming in Visual
Basic courses). It will show how fundamenta programming structures are
implemented using the syntax of C.

This guide and the OUCS course will teach ANSI C (see [5]), but where it differs
sgnificantly from Kernighan and Ritchie (K&R) C, the K&R method may have been
included. It is useful to see the K&R variants, as it is possible that you will encounter
K&R code.

Exercises are included in Chapter 18, along with a list of which exercises follow each
chapter. A set of solutions to these examples can be found in the OUCS user guide 19.5
Programming in C - Exercise Solutions [10] and are available on the World Wide Web

from the URL.:
htt p: /i nf 0. ox. ac. uk/ oucs/ cour sewar e/ c/

12 Why useC?

October 1996

C (and its object oriented version, C++) is one of the most widely used third generation
programming languages. Its power and flexibility ensureit is il the leading choice for
amost al areas of application, especialy in the software development environment.

Many applications are written in C or C++, including the compilers for other
programming languages. It is the language many operating systems are written in
including Unix, DOS and Windows. It continues to adapt to new uses, the latest being
Java, which is used for programming Internet applications.

C has many gtrengths, it is flexible and portable, it can produce fast, compact code, it
provides the programmer with objects to create and manipulate complex structures (e.g
classesin C++) and low level routines to control hardware (e.g input and output ports
and operating system interrupts). It is also one of the few languages to have an
international standard, ANSI C [5]. The background and advantages of C are covered
in more detail in Chapterl5 (see page65).

1 OUCS

Programming in C 19.2/2

2 An Example C Program

/* This programprints a one-line nessage */
#i ncl ude <stdio. h>
int main()

printf("Hello Wrld\n");

return O;

}

/* This program... */ The symbols /* and */ ddimit a comment.
Comments are ignored by the compiler?, and
are used to provide useful information for
humans that will read the program.

mai n() C programs consist of one or more functions.
One and only one of these functions must be
cdled main. The brackets following the
word mai n indicate that it is a function and
not avariable.

{1} braces surround the body of the function,
which consists of one or more instructions
(statements).

printf() is a library function that is used to print on
the standard output streem (usualy the
screen).

"Hello World\n" isastring constant.

\n is the newline character.

; a semicolon terminates a statement.

return O; return the value zero to the operating system.

C is case sengitive, s0 the names of the functions (mai n and pri ntf) must be typed
in lower case as above.

With a few exceptions, any amount of white space (spaces, tabs and newlines) can be
used to make your programs more readable. There are many conventions for program
layout, just choose one that suits you, or aternatively get a program to format your
code for you (such asthe i ndent program).

OUCS

! Actually they are converted into a space in ANSI C; they are deleted completely in
K&R C.

2 October 1996

19.2/2

3 Variablesand Expressions

3.1 Variable Declaration

Programmingin C

Variables should be declared either outside a function or at the start of a block of code,
after the opening { and before any other statements. See section 7.1 for further
details. They must be declared before use and the type must normaly be specified

(exceptions are externa and static declarations where the type i nt

is implicit, see

section 7.2).
i nt mles, yards; /* gl obal variables */
mai n()
fl oat kil onetres; /* local variables */

3.2 Variable Types

There are a number of ‘built-in’ data types in C. These are listed below. Where a
shorter version of the type name exists, this is given in brackets; essentially the base
type i nt isimplicit whenever short , | ong, or unsi gned areused.

short int
unsi gned short int
char

unsi gned char

si gned char

i nt

unsi gned i nt

[ong int

unsi gned | ong int
f1 oat

doubl e

| ong doubl e

(short)
(unsi gned short)

(unsi gned)

(Iong)
(unsi gned | ong)

The range of vaues that can be stored in variables of these types will depend on the
compiler and computer that you are using, but on an IBM PCs and the Borland Turbo

C compiler the ranges are;

short int
unsi gned short int
char

unsi gned char
si gned char

i nt
unsi gned i nt
long int

2 Depends on compiler

October 1996

-128 ® 127 (1 byte)

0® 255 (1 byte)

0® 2550r -128 ® +127 % (1 byte)

0® 255 (1 byte)

-128 ® 127 (1 byte)

-32,768 ® +32,767 (2 bytes)

0® +65,535 (2 bytes)

-2,147,483,648 ® +2,147,483,647 (4 bytes)

OUCS

Programmingin C 19.2/2

unsi gned | ong int 0® 4,294,967,295 (4 bytes)

fl oat single precision floating point (4 bytes)
doubl e double precision floating point (8 bytes)

| ong doubl e extended precision floating point (10 bytes)

The ANSI C standard states only that the number of bytes used to storea | ong i nt
is equal to or greater than the number used to store an i nt , and that the size of an
int isatleast asbig asthe szeof a short int . The C operator, si zeof , reports
the number of bytes used to store a variable or a type?®, and so the above can be
rewritten as:

sizeof (long int) 3 sizeof(int) 3 sizeof(short int)

It may be the case, for your compiler and system, that the sizes for dl three are the
same.

The same holds for the three floating point types:
si zeof (1 ong doubl e) 3 sizeof(double) 3 sizeof (float)

If you have an ANSI C compiler, the actua ranges for your system can be found in the
header files i mits. h forinteger typesand fl oat.h for floating point types.

ANSI C has the qudlifier si gned which can be applied to any of the integer types
(including char). si gned isthe default for al the int types, but is dependent on
the compiler for char .

3.3 Variable Names

Variable and function names (or identifiers) consist of a letter followed by any
combination of letters and digits. Underscore () istreated as aletter and it is possible
have identifiers that begin with an underscore. However, identifiers beginning with an
underscore followed by either another underscore or an upper case letter are reserved,
and identifiers beginning with an underscore followed by a lower case letter are
reserved for file scope identifiers. Therefore, use of underscore as the first letter of an
identifier is not advisable.

Upper and lower case letters are distinct, so fred and Fred are different
identifiers. ANSI C dtates that the first 31 characters of an identifier are significant
except for objects with external linkage. External variables are those declared outside
of any function, all functions are external; all external objects (variables and functions)
have external linkage unless they are declared to be static (see 7.2). As externd

OUCS

% si zeof can be applied to types and objects; when used with an object, brackets are

not needed.

si zeof (char) isaways1.

4 October 1996

19.2/2 Programming in C
names are used by the linker, which is not part of C, the limits on the number of
significant characters are much worse, only six characters and no distinction between
upper and lower case. Some linkers will be better than this, but it cannot be relied
upon. For this reason, the following is dangerous, as the names of the variables do not
differ in the first six characters.

int integerl,
int integer2;
int main()
}
3.4 Assgnment

Assignment is the process of storing avalue in avariable, for example:

mles = 26;

The variable mi | es is known as the Left Hand Sde modifiable value, i.e. it must
be modifiable to be able to store a new value.

3.4.1 Assgnment Operators

October 1996

C has many assignment operators. Pascal and Fortran have one.

= assign

+= assign with add

-= assign with subtract

* = assign with multiply

/= assign with divide

% assign with remainder
>>= assign with right shift
<<= assign with left shift

&= assign with bitwise AND (see 3.8)
A= assign with bitwise XOR
| = assign with bitwise OR

All but the first assignment operator are shorthand methods of modifying a variable or
object. For example, the following two statements are equivalent:

a=a+ 17;
a += 17;

The assign with operators come into their own where the specification of the object to
be modified is long and complicated, and the chance for error in specifying it twice is
large. As an example, consider the two statements below, both of which add one to a
particular array element:

5 OUCS

Programming in C 19.2/2

dat a[abs(nuns[x%al])] = data[abs(nunms[xWal])] + 1;
dat a[abs(nuns[x%Wal])] += 1;

An expression that refers to a modifiable object must appear on the left hand side of
each assignment operator. This is often smply the name of a variable, but as we will
see later includes structure and union members, dereferenced pointers and elements of
arrays. Such expressions are called modifiable Ivalues.

Assignment operators also produce expressions, thus a = b isan expression that has
the same value as the value stored in a (which is not necessarily the vaue of b!) and
has the same type asthetype of a. This permits statements like:

a=b=c=d=e =0

An example of a Situation where the type and vaue of the assignment expression is not
the same as the vaue and type of the right hand operand, consider the following:

int main()
{
doubl e x = 1.23, v;
i nt i;
y =i =X;
printf("%\n", vy);
return O;
}
Herethe assignment expression i = x hasthe int vaue 1,the double variable

y hasthevaue 1.0 after the assgnment, not 1. 23.

3.5 Arithmetic Operators

OUCS

* multiplication

/ division

% remainder after division (modulo arithmetic)
+ addition

- subtraction and unary minus

The / operator is used for two different operations. integer and floating point
divison. If both operands of the divide operator are of integral (char, int and its
derivatives) type then integer division is performed. If either operand is fl oat ,
doubl e or | ong doubl e thenred division isundertaken.

int nmain()

float a;

a=1/ 3;

6 October 1996

19.2/2 Programming in C

printf("%\n", a);
return O;

}

would print 0. 000000 as integer divison was performed even though a is of type
float .

3.6 Increment and Decrement Operators

Increment and decrement operators give a shorthand method of adding/subtracting 1
from an object.

++ increment
decrement

These operators can be prefix or postfix. An example of the different behaviour of the
prefix and postfix forms is given below, but essentialy with the prefix form the
variable is changed before the vaue of the expression in which it appears is evaluated,
and with the postfix form the variable is modified afterwards.

b = 3;
a = b++ + 6; /I*a=9 b=4 *
b = 3;
a = ++b + 6; /* a=10, b =4 */

3.7 Cad Operators

Cast operators alow the conversion of avalue of one type to another.

(float) sum convertstypeto fl oat

(int) fred; convertstypeto i nt

3.8 Bitwise Operators

Bitwise operators allow manipulation of the actual bits held in each byte of a variable.
Each byte consists of a sequence of 8 bits, each of which can storethevalue 0 or 1

Oper at or Operation

~ one's complement

& bitwise AND

n bitwise XOR

| bitwise OR

<< left shift (binary multiply by 2)
>> right shift (binary divide by 2)

October 1996 7 OuCs

Programmingin C 19.2/2

Examples
Operator Operand Result
~ 0010111 1101000
<< 0010111 0101110
>> 0010111 0001011
AND XOR OR
0&0=0 o~0=0 0] 0=0
1&0=0 1r70-=1 1] 0=1
0&1=0 or1=1 0] 1 =1
1&1=1 1~1=20 1] 1=1

For example, to obtain the two separate bytes of atwo byte int (i nt may be more
than two bytes on your system, and not all computers have eight bit bytes, so this
exampleis not universal):

hi Byte = (i >> 8) & OxFF;
loByte =i & OxFF;
If i = 1011010100110111 then

i >>8 = 0000000010110101 (shift I right by 8 hits).

(i>>8) & OxFF ANDs 0000000010110101 with 0000000011111111 giving
10110101 (bits9-160f i)

i & 000000011111111 =00110111 (bits1-8ofi).

OxFF isthe hexadecimal representationof 11111111 .

See[6] for more on bitwise operators.

3.9 Promotionsand Conversons

3.9.1 Integral Promotions

OUCS

Any vaue of type char or short int (signed or unsigned) isconverted to a
value of type int (if it can represent al the values of the origina type) when it
appearsin an expression. If int cannot store al the values of the origina type then
unsi gned int isused.

For example, assuming the following declarations:

char a, b;

then

a+h hastype i nt
printf("%",a); the type of the second argument is i nt

8 October 1996

19.2/2

Programmingin C

char a, b;

a=32;
b=76;
printf(“%”, ath); /[* prints letter | (1=108) */

However, if a function prototype (see section 6.6) exists which states that the
parameter is char then the promotionto i nt will not take place, e.g.

void fred(char c);
int main()
char a;

fred(a);
return O;

}

Theargumentto fred will beof type char .

3.9.2 Arithmetic Conversons

October 1996

Sometimes values within expressions are converted to another type, this is done to
preserve information. For example, it is permitted to add a doubl e to an int , the
i nt value will be converted to a doubl e before the addition takes place rather than
viceversa. For every binary operator in an expression the following rules are used:

— if either operand is | ong doubl e convert the other operand to | ong
doubl e
— otherwise, if either operand isdoubl e convert the other operand todoubl e
— otherwise, if either operand isf | oat convert the other operand tof | oat
— otherwise perform integral promotions on both operands, and then:
— if ether operand is unsigned long int convet the other to
unsi gned | ong int
— otherwisg, if one operandis | ong i nt andthe otheris unsi gned i nt
then:
— if a long int can represent all values of unsi gned int then
convert unsi gned i nt operandto | ong i nt
— ifa long int cannot represent all the values of unsi gned i nt,
then convert both operandstounsi gned | ong i nt
— otherwisg, if either operand is long int then convert the other to | ong
i nt
— otherwisg, if either operand is unsigned int then convert the other to
unsi gned i nt
— otherwise, both operands are of type nt

9 OUCS

Programmingin C 19.2/2
3.9.3 Problems

Whilst integral promotions and arithmetic conversions usualy act to preserve
information it is possible to get caught out. Consider the following on a system where
thetypeof char isactualy unsi gned char .

#i ncl ude <stdi o. h>

int main()
char ¢ = ECF;
if (c == ECF)
return O;
}

On mogt systems ECF is a preprocessor symbolic constant with the i nt vaue -1.

On systems where negative numbers are stored using the two's complement system
(this includes the IBM PCs used in class), -1 is stored by setting every bit in the
variable to 1. When this is copied into ¢ above, we end up with a byte of
11111111 . When the comparison is made, one operand is unsi gned char , the
other is i nt . According to the integral promotions rule above, the unsi gned char

value is converted to i nt ; but unfortunately as the original type was unsi gned
char the byte of 1s gets converted to the int value 255. Thus the test becomes
if (255 == -1) which, not surprisingly, fails. Had the type of char been
si gned char then the problem would not have occurred, as the value -1 would be
preserved in the converson to int . In fact, most programmers use int to store
characters anyway (except in strings).

3.10 Parsing Rules t

OUCS

The C compiler parses a C program by splitting up the program into its constituent
words and operators. Each separate entity is called a token. The C compiler uses a
simple rule when deciding where to split the C source. The compiler bites off aslarge a
chunk of your program as possible which will form alegal C token. This mechanism is
caled greedy lexical analysis. Possible ambiguities when using the increment
operators can be eliminated if the greedy rule is followed.

b+++c; /* a
b+ ++c; /* a

(b++) + c */
b + (++c) */

What about the following?

a = b+++++c; /* a

(b++) + (++c) */

There can be no ambiguity about this statement, the meaning given in the comment is
the only sensible one, but the greedy lexica analysis rule means that a C compiler
cannot arrive at the correct interpretation, instead it thinks the programmer meant

10 October 1996

19.2/2

Programmingin C

a = (b++)++ + ¢c;

which isillegal, as the increment operator can only be applied to modifiable Ivalues of
integra type.

3.11 Symboalic Congtantsand The Preprocessor

#define LIMT 100
#define Pl 3. 14159

#define NAME "Steve"

The preprocessor alows the creation of symbolic constants (and more — see section
11.6)

#define LIMT by convention the symbol is given an upper
case identifier.

100 an i nt constant

3. 14159 a doubl e constant

"Steve" astring constant (again, actually char *)

The preprocessor will replace al tokens which have been #defined by ther
definition, e.g.

printf("%\n", 2 * Pl * radius);
becomes

printf("%\n", 2 * 3.14159 * radius);
but

printf("%\n", NAVES);
does not become

printf("%\n", "Steve"S);

4 Input and Output

4.1 Formatted Output — printf

October 1996

printf("% kmper hour\n", Kkilonetres);

In the program statement above:

"% km per hour\n" is the control string
kil onetres isthe variable to be printed

11 OoucCs

Programmingin C

19.2/2

% is a converson specifier indicating that the
type of the corresponding variable to be
printed is doubl e

The onus is on the programmer to ensure both that the number of conversion
specifications and the number of variables following the control string are the same
(except where * s used to specify afield width or precision), and that the conversion
character is correct for the type of the parameter.

4.2 Conversion Specifiers

OUCS

The format of the conversion specifierina printf format string is

1.

2.

Mandatory % character
Optiond flagsin any order

- print at left of output field

+ print number with asign (even if positive)

gpace print aspace if the first character to be printed is not a sign character

0 pad with leading zeros

aternate output format, see Kernighan & Ritchie [1] or manual
Optional fidd width

The output will take up at least this width on the screen. The output will be padded

with spaces (at left if theflag - isnot present, otherwise at right) if theflag 0 is
not present, otherwise padded with zeros. If the output requires more characters

than the specified field width it will not be truncated. The field width may be
specified as * in which case the next argument after the format string is used to

determine the field width.

Optiona precision

Must be preceded by a period. The precision is the number of decimal places of a
floating point value to print, or the number of characters of a string. The precision
may be specified as * in which case the next argument after the format string is
used to determine precision.

Optiond length modifier

h argument is to be printed as a short or unsigned short (the
argument will have been promoted to int or unsigned int
before being passed to printf , see section 3.9.1, the h modifier
convertsit back!)

I argument is 1 ong or unsi gned | ong

L argument is | ong doubl e

Mandatory conversion character, see 4.2.1.

12 October 1996

19.2/2

Programmingin C

4.2.1 printf Control String Conversion Characters

A table of the control charactersused in printf Statementsis given below:

Character Form of output Expected argument type
c character i nt

dor i decimal integer i nt

X hexadecimal integer int

) octal integer i nt

u unsigned integer i nt

e scientific notation floating point doubl e

f “normal” notation floating point doubl e

g eor f format, whichever isshorter doubl e

s string pointer to char
p address format (depends on system) pointer

Arguments of type char and short int get promoted to int and arguments of
type fl oat get promoted to doubl e when passed as parameters to any function,
therefore use int conversion characters for variables of type char and short
i nt , and doubl e conversion charactersfor a fl oat variable or expression.

4.2.2 Examples
Statement Output Comment
char a; what a day variable printed at position of the
a='a'; . o
orintf("what % conversion specifier
day”, a);
printf("Pi=%:",Pl); Pi =3. 142857: print Pi
printf("% 10f",Pl); F’i_ =3. 142857 print Pi infield width of 10, left
_ _' aligned.
printf("%dof", Pl); Pi = print Pi infield width of 10, right
3. 142857: aigned
printf(“Pi=%:", Pi); Pi033- 142857e print Pi in scientific notation
+
printf("%06.2f", Pl); Pi=003.14: print Pi infield width of 6 with
2 decimal places and padded with
leading zeros

4.3 Literal Congants

October 1996

We need some method of writing literal valuesin our C programs. The most obviousis
the ability to write integer values in decimal form (to base 10); characters, digits and
punctuation; floating point numbers with decimal places and strings. C aso allows the
writing of hexadecimal and octal constants.

13 OUCS

Programming in C 19.2/2

Congant Type

'Y i nt

77 i nt

77L I ong

77U unsi gned

77U unsi gned | ong

0. 003 doubl e

0. 003F f1 oat

0. 003L | ong doubl e

1.0 doubl e

0. 5e-2 doubl e

"hel | 0" string (actually const char [] ,see8.9)
0xA32C i nt written in hexadecimal form (41,772)
017 i nt writtenin octa form (15)

17 i nt written in decimal form (17)

The suffixes used to indicate unsi gned, |ong, unsigned long, float and
| ong doubl e can be written in upper or lower case, but watch out for the fact that a
lower case | (ell) oftenlookslikethedigit 1, andso L ispreferred.

doubl e congtants will be shortened to fl oat when necessary (for example when
assigningtoa fl oat variable).

Note that the type of a character constant is i nt, not char . The vadue will be the
value in the machines native character set (usualy ASCII) corresponding to the
character specified.

Also note the difference between 2 and ' 2' . Thefirstisan int constant with the
value 2, the second isthe int vaue of the character 2 in the character set of the
computer used (on ASCII machinesitisthe int vaue50).

4.3.1 Character Escape Sequences

OUCS

There are severa character escape sequences which can be used in place of a character
constant or within astring. They are:

Escape sequence M eaning
\a aert (bell)
\b backspace
\ f formfeed
\n newline
\r carriage return
\'t tab
\v vertical tab
\\ backdash
\? question mark
\! quote
\ " double quote
\ ooo character specified as an octal number
\ xhh character specified in hexadecimal
14 October 1996

19.2/2

Programmingin C

4.4 Formatted Input — scanf

scanf is used to interpret characters input to the computer and to store the
interpretation in the specified variable(s).

scanf (" %", &x); read a decimd integer from the keyboard and
store the value in the memory address of the
variable x

The & character isvital with arguments that are not pointers. (See section 8).

4.4.1 scanf Control String Conversion Characters

October 1996

scanf usesthe same conversion charactersas printf .

Theargumentsto scanf must be pointers (addresses), hence the need for the &
character above.

Character Form of output Expected argument
type

c character pointer to char

d decimal integer pointer to i nt

X hexadecimal integer pointer to i nt

o] octal integer pointer to i nt

u unsigned integer pointer to i nt

[integer pointer to i nt

e floating point number pointer to fl oat

f floating point number pointer to fl oat

g floating point number pointer to fl oat

S string pointer to char

p address format, depends on system pointer to voi d

The conversion characters e, f and g have exactly the same effect, they read a
floating point number which can be written with or without an exponent.

When reading integers using the i conversion character, the data entered may be
preceded by 0 or Ox to indicate that the datais in octal (base 8) or hexadecimal (base
16).

The d, x, o, uor i conversion characters should be preceded by | if the argument
isapointertoa | ong rather than an apointertoan int, or by h of the argument is
apointerto short int . The e, f,or g converson characters should be preceded by
| if the argument is pointer to doubl e rather than pointer to float, or L for
pointer to |1 ong doubl e .

Maximum field widths can be specified between the % and the conversion character.

For example, the following call to scanf will read no more than 50 characters into
the string variable str .

15 OUCS

Programmingin C 19.2/2

scanf (" 9%0s", str);

A * between the % and the conversion character indicates that the field should be
skipped.

Spaces and tabs in the format string are ignored. scanf aso skips leading white
space (spaces, tabs, newlines, carriage returns, vertical tabs and formfeeds) in the
input (except when reading single characters). However a subsequent space terminates

the string.

char a[50];

scanf ("9%", &) ; [* Input “Wiere is it” */
puts(a); /* Qutputs “Were” */

To read the other strings add more conversion charactersor use gets() (see0)
scanf (“9%%9%", &, &b, &) ;
Other characters that appear in the format string must be matched exactly in the input.

For example, the following scanf statement will pick apart a date into separate day,
month and year values.

scanf (" %/ %/ %", &day, &mont h, &ear) ;

It is dso possible to use a scan set when reading input, the scan set lists the only
characters that should be read (or should not be read) from the input stream for this
conversion, for example:
scanf ("% a-z]c", &) ; only read lower case aphabetic characters
scanf ("% "0-9]c", &) ; do not read digits

4.5 Character /O — getchar & putchar

getchar and putchar are used for the input and output of single characters

respectively.
get char () returns an int which is either ECF
(indicating end-of-file, see 4.6) or the next
character in the standard input stream
put char (c) puts the character ¢ on the standard output

stream.

OoucCs 16 October 1996

19.2/2 Programming in C
int nmain()
i nt C;
c = getchar(); /* read a character and assign to c */
put char(c); /* print ¢ on the screen */
return O;
}
4.6 End-of-File

It is important that we are able to detect when no more data is available on the
standard input stream. If standard input has been redirected from the contents of afile
on disk, then the “end-of-file” condition is when we have read dl the data stored in that
file. It is also possible for a user to indicate end-of-file when standard input is left
connected to the keyboard; though the exact mechanism varies between different
operating systems. On MSDOS, the user should type <Cirl/Zz>, on Unix
<Crl/D>. To ad portability between different operating systems, C provides an end-
of-file value, which is written ECF. This value will be returned by the input routines
scanf and getchar on end-of-file. The value of ECF is defined in the header file
st di 0. h, and it is necessary to include this file before referring to the constant value
ECF. Thisis done by adding the preprocessor directive

#i ncl ude <stdi o. h>

before any statement where the identifier ECF is used. Normally, however, such
include commands are given at the beginning of the program.

5 Flow of Controal
5.1 Relational and L ogical Operators

October 1996

The following relationa operators produce atrue or false value. True and false, when
generated by such an expression, are represented by the int vaues 1 and 0O
respectively Thusthe expression

1<10

hasthe i nt vaue 1. Note, however, that C treats any non-zero value as being true!

Operator M eaning Precedence
> greater than 2
>= greater than OR equal 2
< less than 2
<= less than OR equal 2
== equal 1
I = not equal 1
17 OucCs

Programmingin C 19.2/2

Operators with higher precedence number get evaluated first (a complete list of C
operators and their relative precedence is given in section 19).

The following logical operators are used to combine logical values.
&& AND

| OR
! NOT

5.2 Conditional Branching— if

OUCS

In all of the following examples st at enent can be replaced by a compound
statement (or block) which consists of several statements enclosed within braces.

if (expression) /* if expression is true */
st at enent 1; /* do statenentl */
el se /* otherw se */
st at enent 2; /* do statenent?2 */

The el se part of the statement is optiona. Note (especialy Pasca programmers)
that the semicolon terminating the first statement is required, even if the el se partis
present.

The whole construct above can be treated as a single statement in places where a
statement is expected, in particular an i f -el se statement can appear nested inside
another if -el se statement. When nesting statements in this way, it should be noted
that an el se aways matches with the nearest unmaiched i f . Thus, in the example
below, st atenent2 will be executed only when a< b and ¢ ® d.

if (a<b)
if (c <d
st at enent 1;
el se

st at enent 2;

If it is required to match an el se with an earlier if than the nearest, then braces
are reguired. For example:

if (a<b)

{
if (c <d
st at enent 1;

}

el se

st at enent 2;

statenment 2 isnow executedwhen a3 b.

18 October 1996

19.2/2

Programmingin C

5.3 Conditional Selection — switch

October 1996

switch (expression)

case val ue : statenent; statenent;
case val ue : statenent; statenent;

default : statenent; statenent;

}

switch is a mechanism for jJumping into a series of statements, the exact starting
point depending on the value of the expression. In the example below, for example, if

the value 3 is entered, then the program will print three two one sonet hing
el se!

int main()
i nt i
printf("Enter an integer: ");
scanf ("%l", &);
switch(i)

case 4. printf("four ");

case 3: printf("three ");

case 2. printf("tw ");

case 1. printf("one ");

default: printf("sonething elsel");

}

return O;

}

This may not be what was intended. This process of executing statements in
subsequent case clauses is called fall through. To prevent fal through, break
statements can be used, which cause an immediate exit from the swi t ch statement. In
the example above, replacing

case 4: printf("four ");

with

case 4. printf("four "); break;

and adding break statements to the statements for the other labels, will result in a
program that prints only one string depending on the value of the integer input by the
user.

Thevauesligedinthe case part of the switch statement must be congtant integer
values; integer expressions can be used as long as the value can be determined at
compile time.

19 OUCS

Programmingin C 19.2/2

The default label isoptiond, but if it is present actsasa catch all clause.

The labels can occur in any order; there isno need to havethe def aul t label last, for
example (but it usually reads better if it isl).

5.4 lteration — while, for

whil e (expression) /* while expression is true do*/
st atement; [* st at enment
*/
do /* do */
st atement; [* st at enment */
whil e (expression); /* while expression is true
*

/

for (exprl; expr2; expr3)
st at ement;;

expr1; /* equival ent (alnost) to above */
while (expr2) /* for |oop */
{

st atement;
expr3;
}

The difference between the while and the do-while loops is the location of the
test. With a whi | e loop the test is made before the statement that forms the body of
the loop is executed; it is possible that the statement is never executed. With the do-
whi | e loop, the statement will aways be executed at least once; the value of the
expression then determines if the statement is executed again.

f or loops behave (more or less) like the equivalent whi | e loop shown in the generic
example above. The first expression is executed as a statement firgt, the second
expression is then tested to see if the body of the loop should be executed. The third
expression is executed at the end of every iteration of the loop.

Anexample for loop, to execute a statement 10 times*, is given below:

for (i =0; i < 10; i++4)
printf("%\n",i);

OUCS

* An alternative way of executing a statement n timesis:

i =n;
while (i--)
st at enent ;

If you use this method, make sure that n is greater than zero, or make the test
i-- >0.

20 October 1996

19.2/2

Programmingin C

Any of the three expressionsin the for loop can be omitted. Leaving out the first or
the third expressions means that no additional action is performed either before the
loop starts or after each iteration. Omitting the second expression results in a loop that
will aways execute, the value of the controlling expression is assumed to be true. If
any expression is omitted, the separating semi-colons must still be included. The
following for loop does nothing before it starts, performs no additional action after
each iteration and will continue forever!

for (;;) /* do forever */
printf("hello\n");

The following two statements can be used within any of the three loops we have seen to
add additional control over the execution of the loop. Normally, they are used to abort
aprocessif something has gone wrong.

br eak exitsimmediately innermost enclosing loop
conti nue go immediately to next iteration of loop

When continue isusedina for loop, the third expression in the control statement
is guaranteed to be executed. This behaviour is different from the “equivaent” whil e
loop.

5.5 Local Jumps— goto

October 1996

It is possible to jump to any statement within the same function using goto. A labe
is used to mark the destination of the jump. got o is rarely, if ever, needed, as i f,
switch, while and for should provide al the branching and iteration structures
needed. However, there are times when a goto smplifies the code grestly. A
frequently cited example is when something goes disastroudy wrong deep within
nested loops:

void fred(void)

{
while (...)
for(...)
if (disaster) goto error;

error:
tidy up the mess

But in the example above, remember that the code could be rewritten as:

void fred(void)

while (...)
for(...)
if (disaster)

{

21 OoucCs

Programmingin C 19.2/2

tidy up the mess
return; /* and get out of here! */
}

5.6 Short Circuit Behaviour T

Whenever expressions are connected together using the logical operators && (AND)
or || (OR), only as many expressions as are needed to determine the overall logical
value will be evaluated. This is known as short-circuit behaviour. For example, if two
expressons are connected with && and the first expresson is fase, then it is
guaranteed that the second expression will not be evaluated. The same is true of
expressions connected with | | wherethe first expression is true. For example:

if (b!=0&& a/ b>1)
st at enent;

will prevent the evaluationof a / b if b iszero.

If the programmer accidentally uses & instead of && then the short-circuit behaviour
islogt, which, in the example above may lead to a run-time division by zero error.

5.7 Problems
571&& cf. &

OUCS

Unfortunately it is very easy to forget that the logical AND operator is represented by
two ampersands, and type only one by mistake (which is the bitwise AND operator).
The problem is made worse by the fact that the net result is often the same! The root of
the problem is that the value of true (when generated by a relational or logica
operator) is 1 and faseis 0, but C treats any non-zero value as being true. So, as an
example, consider the two expressions:

@ (a>b) & (c < d)
(b) (a>b) & (c <d
The values of the two expressions are:

a>hb c<d @ (b)

false(0) false(0) 0 0
false(0) true(1) 0 0
true(1) false(0) 0 0
true(1) true(1) 1 1

In contrast, consider:

if (fred() & jim))

22 October 1996

19.2/2

Programmingin C

where the functions return i nt values. If fred returnsthevalue 2 and jim the
value 1 (both of which are treated as being true), then the test aboveistrue. If & is
used by mistake, then the test will be the result of a bitwise AND of 2 (10) and 1
(01), whichis 0 (00) or false.

5.7.2 Assignment c.f. Comparison

a=1; 1 isassigned to the variable a
a == 1; variable a iscompared with the congtant 1
It is very easy to type = by mistake instead of ==. However, the problem is

compounded by the fact that most of the time the compiler will not pick up your
mistake. Why?

@

while (a == 6) /* while ais equal to 6 do the */
st at enent ; /* statenent */

(b)

while (a = 6)
st at enent

Code (a) is probably the intended statement. What happens if you accidentally type (b)
instead. The code given in (b) is perfectly legal C. What does it do?

— 6isassgnedto a.
— the expresson a = 6 istested — it has the vaue 6 which is non-zero and
therefore true.

— theloop will be executed forever as a = 6 isawaystrue.

To avoid such problems, some programmers write the constant on the left hand side of
the == operator, then if they accidentally type = instead, the compiler will produce an
eror as a constant is not an Ivalue. This will only work for comparison with a
constant or expression.

5.8 Declaring Array Variables

October 1996

The following declaration statesthat x isan array of three integer values.

i nt X[3];

Each individua part (or element) of x is accessed by adding an index value in square
brackets after the array name, e.g.

23 OUCS

Programmingin C 19.2/2

x[0] = 74;
printf("%\n", x[2]);

Note that the index values range from 0 to one less than the number of elements.

Arrays can have any number of dimensions; to declare a2-D array of doubl e:

doubl e mat ri x[10] [10] ;

5.9 Initialisng Array Variables

OUCS

i nt ndigitfzo) ={ 0 0, O, O, O, O, O, O, O, 01};
char greetingl[] = "hello";
char greeting2[] ={ 'h", "e, "I', "I', "0, "\0 };

The last two declarations show the two aternative ways of initialisng an array of
characters. They are exactly equivalent, but one is somewhat easier to type!

If the number of elements of the array is not specified, then the compiler will determine
this from the initidiser. The declarations of greetingl and greeting2 above
both declare an array of 6 characters.

The values given in a brace delimited initialiser (first and last examples above) must be
constant expressions (one whose value can be determined at the time of compilation). If
theinitialiser is a single expression, the restriction does not apply.

If the number of expressionsin the initidiser is less than the number of eementsin the
array then the remaining elements will be initidised as though they were static objects;
that is arrays of numeric values will be initialised with zeros whatever the storage class
of the array (external, static or automatic).

When initialisng multi-dimensional arrays, extra braces can be used to show the
reader how the values are to be used:

i nt x[31[2] ={{1 2%}, {3 4}, {5 6} 1},

Extra braces are needed if values are to be omitted from the initialiser:

int x[3][2] ={{1 2}, {3}, {5 6}1}

In this example we have omitted the initialiser for x[1] [1] ; without the extra braces
the compiler would initidlise x[1][1] with 5 and would leave x[2][1] (i.e. the
last element) uninitialised.

K&R C permitsinitialisation of static arrays only.

24 October 1996

19.2/2 Programming in C

6 Functions

6.1 Building Blocks of Programs

All C programs consist of one or more functions. Functions are the building blocks of
a program. All functions are at the same level — there is no nesting. One (and only
one) function must be called nai n.

6.2 Return Value

All functions can return avaue, including nain.

Functions can return arithmetic values (i nt, fl oat etc.), structures, unions, pointers
or voi d. If the return type is specified as being voi d, then no vaue is returned by
the function. Functions cannot return afunction or an array.

For functions that will return a value, the return statement is used in conjunction
with an expression of an appropriate type. This causes immediate termination of the
function, with the value of the expression being returned to the caller. return can
also be used with functions of type voi d, but no return value can be specified.

6.3 Function Parameters
All functions (including mai n) can accept parameters.

The example below shows the old Kernighan & Ritchie C function definition format.

doubl e m ni mum(x, y)
doubl e X, v;

{

if (x <vy)
return x;

el se
return vy,

}

ANSI C will accept this old style definition, but introduces a newer, safer, definition
format:

doubl e m ni mum(doubl e x, doubl e vy)

{
if (x <vy)
return x;
el se
return vy,
}

In both cases the parameter list must be specified, and their types must be declared.
The parameters to the function (the expressions given in the function call) are passed
by value only.

October 1996 25 OoucCs

Programmingin C 19.2/2

If, in anew style definition, the parameter list contains the singleword voi d, then the
function does not take any parameters.

It is common to cal the variables specified in the function definition parameters and
the expressions given in a function cal arguments. For example, in the following cal
of m ni num, the expressons a and b * 2 are the arguments to the function. The
values of the two expressions will be copied into the parameters x and y. Sometimes
the terms formal argument and actual argument are used instead; the formal argument
being the variable given in the function definition, the actua argument being the
expression given in the function call.

mni mum(a, b*2);

6.4 Variable Function Parameters

All function parameters are passed by vaue. To make a function dter a variable, the
address of the variable must be passed, i.e. pass the variable by reference.(See 8)

int max(int a, int b, int *c);
int main()
int x =4, y =5z
max(x, y, &z); /* generate a pointer to z */
return O;
}
int max(int a, int b, int *c)
{
if (a>Dh)
C = a / *c nodifies the variable */
el se /* whose address was passed */
C = b; / to the function */
}

6.5 Function Definition and Declar ation

OUCS

A function definition is where the function name, parameters, code and return type are
specified. A function declaration is where the name and return type of a function are
given. The definition of a function includes a declaration of that same function
implicitly.

A function can be declared many times (as long as the declarations declare the function
to be of the same type) but can only be defined once. Declarations of functions are
sometimes necessary to appease the compiler, which aways assumes, if the
information is not available, that all functions return i nt .

/* declaration of m ninun() */
doubl e m ni nun{doubl e x, double y);

26 October 1996

19.2/2

Programmingin C

int nmain()

printf("%\n", mninun{1l.23, 4.56));
return O;

}

[* definition of mninmun{) */
doubl e m ni mum(doubl e x, doubl e vy)

doubl e X, Y;

{
if (x <vy)
return x;
el se
return vy,
}

The problem could aso be solved by placing the function definition before the cal to
the function.

6.6 Function Prototypes

October 1996

The ANSI C gtandard introduces function prototypes. An example is given below. It
aso allows function definitions to be written in the same form as the new prototypes.

doubl e m ni nun{doubl e, doubl e);
/* prototype of mninmn() */

int nmain()

printf("%\n", mninun{1l.23, 4.56));
return O;

}

doubl e m ni mum(doubl e x, doubl e vy)
/* definition of mninmun{) */

{
if (x <vy)
return x;
el se
return vy,

The use of prototypes or the new style function definition allows the compiler to check
that the parameters to a function are sensible (not necessarily the same), as well as
checking the return type of the function; but only if the definition or prototype appears
before the function call.

ANSI C draws a distinction between the following two statements. The first is a
function declaration stating that fred takes an, as yet, unspecified number of

parameters. The second is a function prototype which states that ji m takes no
parameters (see dso 7.3).

27 OoucCs

Programming in C 19.2/2

doubl e fred(); /* declaration */
doubl e jin{void); /* prototype */

6.6.1 Standard Header Files

Prototypes of the library functions are given in several standard header files. For
example, stdio.h contains prototypes for printf, scanf, putchar and
get char . Other standard header files are;

assert.h assertions

ctype. h character classtests

float.h system limits for floating point types

linmts.h system limits for integral types

mat h. h mathematical functions

setjnp. h non-local jumps

signal . h signals and error handling

stdarg. h variable length parameter lists

stdlib.h utility functions; number conversions, memory alocation,
exi t and syst em, Quick Sort

string. h string functions

tine. h date and time functions

To include these standard header files in your code, use the preprocessor directive
#i ncl ude and place angle brackets around the name of thefile, e.g.

#i ncl ude <mat h. h>

7 Scope, Blocksand Variables

7.1 Blocksand Scope

Cisablock structured language. Blocks are delimited by { and }. Every block can
have its own locd variables. Blocks can be defined wherever a C gtatement could be
used. No semi-colon is required after the closing brace of ablock.

{

i nt a =5;

printf("\n%", a);
i nt a= 2
printf("\n%", a);
}

}

Reference to a variable will be to the variable of that name in the nearest enclosing
block.

OoucCs 28 October 1996

19.2/2

Programmingin C

7.2 Variable Storage Classes +

aut o The default class. Automatic variables are local to
their block. Their storage space is reclaimed on exit
from the block.

regi ster If possible, the variable will be stored in a processor
register. May give faster access to the variable. If
register storage is not possible, then the variable will
be of automatic class. Use of the register class is not
recommended, as the compiler should be able to make
better judgement about which variables to hold in
registers, in fact injudicious use of register variables
may sow down the program.

static On exit from block, static variables are not reclaimed.
They keep their value. On re-entry to the block the
variable will haveits old value.

extern Allows access to external variables. An external
variable is either a globa variable or a variable
defined in another source file. External variables are
defined outside of any function. (Note: Variables
passed to a function and modified by way of a pointer
are not external variables)

static external External variables can be accessed by any function in
any source file which make up the final program.
Static external variables can only be accessed by
functions in the same file as the variable declaration.

7.3 Declaration ver sus Definition

October 1996

Definition is the place where variable is created (allocated storage).

Declaration is a place where nature (type) of variable is stated, but no storage is
allocated.

Variables can be declared many times, but defined only once.

i nt V; /* definition of v */
int max(int a, int b)

{

extern int V; /* declaration of v */

Declaring a variable without defining it is more useful when a variable needs to be
accessed in more than one source file when a program is split between multiple source
files. For example:

29 OUCS

Programmingin C 19.2/2

a.c
b.c
int v; /* declaration and extern int v; /* declaration
definition */ only */

a() b()

{ {

v = 15; printf("%\n",v);

} }

In fact, as variables can be declared more than once in the same source file, and to
ensure that the variable is declared identically in each source file, it is common to place
declarations of global variablesin a header file which is then included in each source
file.

prog. h

extern int V;

a.c
b.c
#i ncl ude "prog. h" #i ncl ude "prog. h"
int v, /* definition */
a() b()
{ {
v = 15; printf("%\n",v);
} }

7.4 I|nitialisation of Variables

If variables are not explicitly initidlised, then externa and dstatic variables are
initialised to zero; pointers (see 8) are initialised to NULL; aut o and regi ster
variables have undefined values.

i nt x = 1;
char quote = "\'";
| ong day = 60 * 24,
i nt len = strlen(s);
external and static initialisation done once only
auto and register initialisation done each time block is entered

external and static variables cannot be initiadised with a vaue that is not
known until run-time; the initialiser must be a constant expression.

OUCS 30 October 1996

19.2/2

Programmingin C

8 Arrays, Pointersand Strings

8.1 Pointersare Addresses

A pointer isreally the address of something in memory.

Pointers are needed if it is required that a function change the value of an object
(though global variables could be used). For example, the scanf function takes
pointers as arguments (See 6.4).

8.2 Pointersarenot Integers

It is possible to treat pointers as though they are integers since they hold actual
addresses in memory eg 7232. printf, scanf, assignment and some of the
arithmetic operators work with pointers, but in many cases such operations should not
be used as the results will differ from one machine to another. It is not, for example,
guaranteed that a pointer will be the samesizeasan i nt . Infact, even on an IBM PC
the size of a pointer variable depends on the memory model used, and so the
assumption that it occupies two bytes is an extremely dangerous one.

8.3 The* and & Operators

& gives the address of something in memory, that is it generates a pointer to
the abject
* giveswhat is pointed at by apointer (caled dereferencing)

For example, assuming the following declaration:

int i =17;

Then the expression & generates a pointer to the variable i . We can then find out
what this pointer is pointing at by applying the * operator to the newly generated
pointer; thus *& should have the value 17.

8.4 Declaring Pointer Variables

October 1996

To declare a pointer variable we must state the type of object that the pointer will point
at. To declare apointer to an integer, we write:

int *ptr;

which says that the type of *ptr is int, that is the object that we find when
following the pointer ptr is an integer. Therefore the type of ptr is pointer to
int,or int *.

When declaring severd pointers in a comma separated list, it is necessary to placea *
before the identifier of each pointer:

31 OUCS

Programmingin C 19.2/2

int *ptrl, *ptr2, *ptr3;

this declares three pointers to integers, whereas

int *ptrl, ptr2, ptr3;

declares one pointer variable and two integer variables.

When using initialisers with pointer variables, it is the variable itself that is being
initidiased (i.e the address the pointer holds) and not anything at the other end of the

pointer:
mai n()
int i =17; /* ordinary int variable */
int *pi = &; /* a pointer to an integer
initialised to point to i
pi now hol ds address of i */
pi = 25; / assign to what is pointed at

by the pointer,
i now contains the val ue 25*%/

printf ("%, *pi) [* prints the value of what is in
the address pi contains e.g 25*/
printf("%2, pi) /* prints the contents of pi
e.g 6582, (the address of i) */
return O;

}

8.5 Pointersand Arrays
An array name behaves in many ways asthough it is a pointer to the first element
of thearray.

However, the name of an array is a constant, it is not possible to change its vaue,
otherwise it would be possible to lose access to the contents of the array. Also, an array
nameisnot an Ivalue, it cannot appear on the left hand side of an assignment operator.

The following array declaration gives the following structure in memory:

int x[3] ={ 23, 41, 17 };

OoucCs 32 October 1996

19.2/2 Programming in C

X 23 X[0]

41 | X1
17 X[2]
Expression Value
x[0] 23
x[1] 41
X an address, where the datais stored
* X 23
x+1 an address, where the second e ement is stored
*(x+1) 41
X+2 an address, where the third element is stored
*(X+2) 17
&(x[0]) X
*&(x[0]) 23
& (x[0]) illegal, the & and * do not smply “cancel”

[This would be avalid expression if the array was an
array of pointers!]

The operation of accessing what a pointer is pointing at viathe * operator is called
dereferencing the pointer or pointer indirection.

8.6 Dynamically Sized Arrays
Pointers can be used to produce dynamically sized arrays.

Assuming the following declarations:

int x[3];
int *y = nmalloc(3*sizeof (int));

This gives the following structuresin memory:

October 1996 33 OUCS

Programming in C 19.2/2

X x[0] y ® y[O]
X[1] y[1]
x[2] yl2]

The confusion is compounded by the fact that array notation can be used to access the
memory pointed to by vy, thus y[0], y[1] and y[2] access the memory allocated
withthecall to mal | oc() .

However, on an IBM PC running MS-DOS and using the small memory modd
si zeof (x) is6and sizeof (y) is2.

8.7 TheNULL Pointer and Pointer to void

OUCS

The constant 0 when used in a pointer context (e.g. assigned to a variable of any
pointer type or compared with a pointer value) is replaced by a null pointer of the
appropriate type. Such a pointer is used to indicate that a pointer does not point
anywhere or is invalid. The preprocessor constant NULL (defined in the header file
st di 0. h) can be used instead of the constant 0.

Library functions that return pointers return NULL if an error occurs. The value of a
pointer should always be checked to ensure that it isnot NULL before attempting to
dereferenceit. Attempting to dereference a NULL pointer will give a run-time error on
some systems.

Pointer to void (void *) is ANSI C's generic pointer type (in K&R C it is
char *). Functions, suchas nal | oc() , which return a generic pointer, return voi d
*. Values of type void * can be assigned to any other pointer type without a cat,
but thisis potentially dangerous, as the object the pointer references may not be of the
same type as the pointer to which it is being assigned.

char *a;
void *b;
b="Hel | 0";
a=b;

printf("%", a);

34 October 1996

19.2/2

Programmingin C

8.8 Pointer Arithmetic

8.9 Strings

October 1996

char *p, s[100];
i nt *a, b[100];
doubl e *f, g[100];

p =s; /* p points to s[0] */
a = b; /* a points to b[0O] */
f =g; /[* f points to g[0] */
p++, /* p points to s[1] */
at+; /* a points to b[1] */
f++; /[* f points to g[1] */

Incrementing a pointer will always step the pointer the appropriate number of bytes so
that it skips onto the next object in memory, i.e. incrementing a pointer to a f | oat
will move the pointer onto the next f1 oat .

A giring is a contiguous sequence of char values terminated by the NULL character
(written as '\ 0'). Such character sequences can be stored in an array of char or
accessed via a pointer. If the latter approach is taken then care is needed ensure that
memory needed to store the string itself is alocated if needed.

The following shows the two alternative ways of declaring a string variable capable of
storing up to 50 characters (remember that the string needs to be terminated by '\ 0'
gpace must be reserved for this character). The first element of the string s is aways
s[0] and s isapointer to thefirst element in the array.

char s1[50];
char *s2 = mal |l oc(50); /* s2 contains the address of
s2[0] */

Note, however, that the call to mal | oc() may fail, so some run-time checking of the
valueof s2 (to makesurethat itisnot NULL) should be included.

A common problem when using pointers to store strings is to forget to alocate any
memory to store the string itself, thus:

char *str;

alocates (on MS-DOS computers with the small memory model) two bytes of memory
in which to store the pointer to the first character of the string. No other memory is
reserved. If an attempt is made to store a string via this pointer, perhaps by reading a
string from the standard input stream:

scanf (" %9s", str);

35 OUCS

Programmingin C 19.2/2

then the program may crash. The reason isthat scanf will Smply store characters
in consecutive memory locations starting at the current value of str . Inthiscase str

was never initidlised and therefore will contain some random value. scanf may well
be trying to write the characters read into memory where other variables are stored,

where the program itself is stored, or perhaps even where the operating system is
stored!

Whenever literal strings are used in a program, only the starting memory address of the
stored string is saved, the terminating '\ 0' will mark theend. Thus

printf("%", "hello world");

will print hel I o worl d , whilst

printf("%", "hello world");
will print the memory location where the string is stored.

It is useful to invedtigate the types and meanings of the various pointer operators when
applied to a string accessed through a pointer. For example:

char *s = "hello world";

declares apointer to a char cdled s, and initiaises it to point to the string "hel | o
wor | d* . Remember that thetype of *s is char , therefore the type of s is char
* or pointer to char .

meaning type
&s address of the pointer variable s pointer to pointer to char,
(char **)
S vaue of s, where the gring pointerto char, (char *)
"hello world" isstored
s first character of the string (" h) ~ char
s[0] first character of the string (" h*) ~ char

8.9.1 Library String Functions

OUCS

The ANS! standard library includes the following string functions.

char *gets(a) reads a from standard i nput
i nt put s(a) prints a to standard out put
char *strcpy(a, b) copies b to a,returns a
char *strcat(a, b) appends b onto a, returns a
i nt strlen(a) returnslength of a
char *strchr(a, c) returns pointer to first occurrence of c
in a
36 October 1996

19.2/2

October 1996

Programmingin C

char *strrchr(a, c) returns pointer to last occurrence of ¢ in
a

i nt strcnp(a, b) compares strings, returns < 0 if
a<hb,>0ifa>bando0 if
a ==

a and b aredtrings, ¢ isa char .

Prototypes for these functions are in the header file string. h, include this file for
proper checking of arguments to these functions.

It is the programmer's responsibility to ensure that enough memory has been alocated
to store the new strings that are formed by the functions strcpy and strcat .

strcnp peforms a lexicographic comparison of the two string arguments using the
character set of the host computer, thus on an ASCII machine "Fred" is less than
"file" (F occurs before ' f' in the ASCIl character set) and " 100" is less
than " 2" . If you wish to perform string checking using some collating sequence other
than that given by the base character set, then use strcol | instead.

The following program illustrates use of the library string functions and some of the
problems with using string variablesin C:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

mai n()

char s1[100]

"hel | 0"; /* initialise an array of
characters */

char s2[100] = "world";
char s3[100];
char *s4 = "HELLO'; /* initialise pointer s4
to point to the string
"HELLO' */
char *sb;
char *s6;
strcpy(s3,sl); /* copy "hello" into s3 */
strcat(s3," "); /* append " " */
strcat(s3,s2); /* append "world" */
printf("%\n",s 3); /* should print "hello world" */
strcpy(s5, s4); /* BAD idea, copies 'h', 'e

into nenory | ocation starting

at the current value of s5

s5 was never initialised and

so contai ns sone undefined val ue;
the program nay crash */

s5 = mall oc(strlen(s4)+1);
/* MJUCH better, set s5 to point
enough nmenory to store the
string;
don't forget that we need to

37 OUCS

Programmingin C 19.2/2

9 Files

reserve space for the "\0' too,
hence “strlen(s4)+1" */
strcpy(sb, s4);

s6 = strdup(s4); /* equival ent to malloc/strcpy
conbi nati on above; but NOT ANSI
so not al ways avail able */

get s(s5); /* read in s5 fromstdin */
put s(s5); /* wites s5 to stdout */
free(sbh); /* not really necessary as heap

will be reset on program
termnation */
free(s6);

9.1 File Pointers

There are many ways to use filesin C. Many of them mirror the operating system use
of files.

The most straightforward use of filesis viaafile pointer.
FILE *fp; fp isapointer to afile.

The type FI LE, isnot abasic type, instead it is defined in the header file stdio. h,
thisfile must be included in your program.

9.2 Opening aFile

OUCS

fp = fopen(fil enane, node);

The filename and mode are both strings.

The mode can be

"t read

"w write, overwrite file if it exists

"a" write, but append instead of overwrite

"r4t read & write, do not destroy fileif it
exists

" read & write, but overwritefile if it
exists

"a+" read & write, but append instead of
overwrite

38 October 1996

19.2/2 Programming in C

"b" may be appended to any of the above to force
the file to be opened in binary mode rather
than text mode

fp = fopen("data.dat","a"); will open the dik file data.dat for
writing, and any information written will be
appended to the file

The following useful table from the ANSI C Rationde [5] ligts the different actions
and requirements of the different modes for opening afile:

r ' a r+ WH a+
file must exist before open v v
old file contents discarded on open v v
stream can be read v v v v
stream can be written v v v v v
stream can be written only at end v v

fopen returns NULL if the file could not be opened in the mode requested. The
returned value should be checked before any attempt is made to access the file. The
following code shows how the vaue returned by f open might be checked. When the
file cannot be opened a suitable error message is printed and the program halted. In
most situations this would be inappropriate, instead the user should be given the
chance of re-entering the file name.

#i ncl ude <stdio. h>
int main()

char fil enane[80];
FILE *fp;

printf("File to be opened? ");
scanf ("%9s", filenane);

fp = fopen(filenane,"r");
if (fp == NULL)
{

fprintf(stderr, "Unable to open file %\n", filenane);

return 1; /* Exit to operating system*/

}

code that accesses the contents of the file

return O;

}

October 1996 39 OUCS

Programming in C 19.2/2

Sequentia file access is performed with the following library functions.

fprintf(fp, formatstring, ...) print to afile

fscanf(fp, formatstring, ...) read from afile

get c(fp) get a character from afile

putc(c, fp) put a character in afile

ungetc(c, fp) put a character back onto a file (only
one character is guaranteed to be
able to be pushed back)

fopen(fil enane, node) open afile

fcl ose(fp) close afile

The standard header file stdio.h defines three file pointer constants, stdin,
stdout and stderr for the standard input, output and error streams. It is
considered good practice to write error messages to the standard error stream (so that
error messages do not get redirected to files with the Unix and MS-DOS > redirection
operator, or disappear down pipes). Usethe fprintf() functionto do this:

fprintf(stderr,"ERROR unable to open file %\n", fil enane);

The functions fscanf() and getc() are used for sequential access to the file,
that is subsequent reads will read the data following the data just read, and eventualy
you will reach the end of the file. If you want to move forwards and backwards
through the file, or jump to a specific offset from the beginning, end or current location
use the fseek() function (though the file must be opened in binary mode). The
function f t el | () reportsthe current offset from the beginning of thefile.

If you wish to mix reading and writing to the same file, each switch from reading to
writing (or vice versa) must be preceded by a call to fseek(), fsetpos() ,
rewi nd() or fflush() .Ifitisrequired to stay a the same position in the file then
use fflush() or fseek(fp,OL, SEEK CUR) which will move O bytes from the
current position!

9.3 Program Arguments

OUCS

int nmain(int argc, char *argv[])
{
}
argc number of arguments
argv array of strings (the arguments themselves)

For example, if your program is caled fred and you type at the operating system
prompt:

fred tomdick harry

40 October 1996

19.2/2

Programmingin C

then argv[0] will bethe string "fred" (the program name), argv[1] will be
"tom', argv[2] will be "dick", argv[3] willbe "harry" and argc will be
4.

Some systems will set argv[0] to be the complete path to the executable program,
and some set it to be anull string (i.e. astring containing only the '\ 0' character).

ANSI statesthat argv[argc] exists, and hasthevalue NULL.

It is conventiona to cdl the argumentsto main, argc and argv, in fact any name
can be used, but the types must be the same as shown above. Some systems aso
permit an optiona third parameter, often called env, which is an array of strings
holding the current set of environment variables. As there is no integer value which
holds the number of eements of this array, the find NULL value held in the array
must be used to determine the number of entries. The following example shows how to
print boththe argv and env arrays:

int nain(int argc, char *argv[], char *env[])

{

int i;

for (i =0; i < argc; i++)
printf("9%\n", argv[i]);

for (i =0; env[i] !'= NUL; i++)
printf("9%\n", env[i]);

return O;

}

9.41/0 Streams £

There are three standard /O streams available for use; standard input, standard
output and standard error. The identifiers stdin, stdout and stderr (definedin
the header file stdio. h) refer to the three different streams. Normally stdin is
connected to the keyboard and st dout & stderr are connected to the screen. All
input routines refer to the stdin stream and all output routines refer to st dout

unless otherwise directed.

9.5 Redirection of /O Streams

October 1996

With many operating systems (including Unix and MS-DOS) it is possible (when
running the program) to redirect the standard streams to other devices (e.g. a printer)
or to afile instead of the screen or keyboard. With both Unix and MS-DOS redirection
is obtained with the < and > operators. For example, if your program iscaled fred,

then typing

fred

41 OoucCs

Programming in C 19.2/2

a the OS command line would connect stdin to the keyboard and stdout and
st derr tothe screen. If, instead, you typed (on an MS-DOS system):

fred <jimdat > Iptl

then dl input routines would read from the file jimdat and al output routines
would write to the parallel printer. MS-DOS does not permit redirection of the st derr

stream, but Unix does; under the Bourne shell the following command would direct the

standard output stream to a printer and standard error to thefile errors.

fred <jimdat > /dev/lp 2> errors

Unix and MS-DOS aso permit piping of data from one program to another, thus

fred | jim

Herethe stdout dsream of fred isconnectedtothe stdin streemof jim The
same effect (though with the addition of the creation of a temporary file which would
need to be deleted later) could be achieved by typing

fred > tenp.tnp
jim< tenp.tnp

The exact mechanism by which pipes are constructed should not interest us, but it is
interesting to note that on a multi-tasking OS like Unix al the programs which make
up a pipe are run concurrently.

It is considered good practice to write al error messages to the stderr stream so
that any error messages stand a good chance of appearing on the screen, instead of
disappearing into an output file or “down” a pipe.

10 Structures, Unionsand Fields
10.1 Enumerated Types

OUCS

enumday { sun, non, tues, weds, thur, fri, sat } di, d2;
enumsuit { spades, hearts, clubs, dianonds } sl;

enum sui t s 2, s3;

The identifiers in the enumerated type list can be used in assignments or tests, for
example:

dl = thur;
sl = hearts;
if (dl == sat) ...

switch (s1) {
case spades :

42 October 1996

19.2/2

Programmingin C

Each value of the enumerated type ligtisgivenan int value. If no extra information
is provided by the programmer, the values start at zero and increase by one from left to

right. The value of any constant in the enumeration list can be set by the programmer;

subsequent enumeration constants will be given vaues starting from this value. There
is no need for the values given to the enumeration constants to be unique.

The following (non-sensical) code fragment illustrates these three points:

enumday { sun=1, non, tues, weds, thur, fri=1, sat } di;

the values of the enumeration constants will be:
sun 1, non 2, tues 3, weds 4, thurs 5, fri 1, sat 2

Enumeration constants must be unique across al enumerated types currently in scope;
the following would be illegd:

enumday { sun, non, tues, weds, thur, fri, sat } di;
enum weekend { sat, sun } dz;

The base type of an enumerated typeis i nt , and vaues of type i nt can be assigned
to variables of an enumerated type, athough such use may be meaningless, e.g.

enumday { sun, non, tues, weds, thur, fri, sat } dl = 76;

Some debuggers are able to show the values of variables of enumerated type using the
identifiers used in the enumeration list, this helps with debugging.

As with gtructures and unions, declarations of enumerated types are loca to the block
in which the declaration occurs.

10.2 Defining New Namesfor Typeswith typedef

October 1996

It is possible to create new names for existing types with t ypedef . Thisis frequently
used to give shorter or less complicated names for types, making programming safer
and hopefully easier.

For example, consider declaring a function parameter which is a pointer to a function
which itsdlf takes an array of strings as a parameter and returns a string:

typedef char *string; /* string is a pointer to a char */
typedef string strfn(string []);
/* strfn is a function that takes
an array of strings as a
paraneter and returns a string */
typedef strfn *pstrfn; /* pstrfnis a pointer toa strfn */

void fred(pstrfn f)
}

43 OUCS

FREE EBOOKS, NOTES, VIDEOS &
PLACEMENT MATERIAL

For All Companies placement
Material

e, T [| I

P-.-'.'. 4 $ s fe e PEy iy SANE O 5T R .f-.'il.‘l =1l Lot Foas) =y
(AN “ acementclass ~
e j'-l"“"-’_r"l | A S S A B Y B B B B Bl d ol :

s B e 5

For CAT Exam Preparation
Material

=, -
Foml o <

' | I' .('i'i'l r:‘-“. I-ﬂ
W

L

| R ¥ ¥ 8 o
e WA

= [L -t el
i N, - .

cla Qs
e B SN i

P ror GATE Exam Preparation

GATE _ Materiéll

ATa = § of (= = p———

[falTades &k of & = el ol el =

| § o= 4 |} = | C s B - | Rt rﬁi:-.

L i e 0 Sl wl S el
el = k.

For Engineering Books &
Material

= o '\.' . S J(i
(S EIMIMIKS
LSRR, S Bl W W B

Codes of Following
Programming Languages

Language

.
—
s I
pxtent -

n

4 |

L .
nNoN exam

AohvY) i =25
S 3;" ‘lf---':' B S AL R R P B S P

Programmingin C 19.2/2

Without using t ypedef the declaration would be somewhat more complicated:

void fred(char *(*fn)(char *[]))
}

t ypedef declarations areloca to the block in which they appear.

10.3 Structures

OUCS

Structures are variables that have several parts; each part of the object can have
different types. Each part of the structure is called a member of the structure.

There are two ways to declare structured variables. You can declare a type of your
own and use that type name to declare as many variables as you wish of that type, e.g.

struct date {
int day, nonth, year, yearday;
char nonnane[4] ;

}s

struct date d;
struct date di1 = {4, 7, 1776, 186, "Jul"};

Or you can declare the variables directly:

struct date {
int day, nonth, year, yearday;
char nonnane[4] ;
} d, d1 = {4, 7, 1776, 186, "Jul"};

The two declarations of d1 above show that initialisation of structures takes the same
form asthat of arrays.

The word following the keyword struct isthe tag name of the structure, it gives the
structure definition a type name that can be used in later declarations of variables,
function parameters and return values. The tag identifier can be omitted if the type
name is not needed for subsequent declarations.

Individual members of the structure are accessed by use of the . (pronounced ‘dot’)
operator (asin Pascal). If the structure is accessed through a pointer, the -> operator
can be used.

struct date {
int day, nonth, year, yearday;
char nonnane[4] ;

}s
struct date di;

struct date *d2 = nalloc(sizeof (struct date));

44 October 1996

19.2/2 Programming in C
dl.nmonth = 7;
(*d2).year = 1993;
d2->year = 1993;
The last two statements show the alternative ways of accessing the structure through a
pointer and they are exactly equivaent. The brackets are required to dereference the
pointer d2 before accessing the structure element.
K&R compilers will not permit structures to be passed by value to a function or to be
returned from a function (pointers must be used instead in both circumstances), nor
will they allow automatic structures to be initialised. No such restrictions exist in
ANSI C.
Declarations of structures and unions obey the usua scoping rules, thusiit is possible
to localise a declaration of a structure to a block.
Whole sructures cannot be compared directly, instead a member by member
comparison is needed.
10.4 Unionst

October 1996

A variable of union type may hold (at different times) objects of different types and
sizes, the objects all occupying the same area of storage.

uni on tag {
nmenbers;
} vari abl es;

For example:

uni on val ue
int intval;
float fval;
char *pval;
} uval;

The variable uval can hold three different types of object, an int,a float or a
string. It is the responsibility of the programmer to ensure that they access the variable
in the appropriate manner.

Access to the union membersisviathe . operator as with structures, e.g. the data in
the union above may be accessed as

uval . i ntval
uval . f val
uval . pval

45 OUCS

Programming in C 19.2/2

Also, as with gtructures, the tag identifier can be omitted if the type is not needed for
further declarations.

When initidlising a union, the initialiser must be a valid initialiser for the first member
of the union enclosed within braces. It isonly possibleto initidisethe i nt member of
the example union above, e.g.

union value u =1{ 6 };

10.5 Fieldst

A field is amember of a structure whose bit length is specified. This can be useful for
economic storage (not nearly as important as it used to be); but be warned that the
code required to access bit fields becomes more complicated and so the program may
have both alarger code size and also run more sowly.

struct {
unsi gned is_keyword : 1,
unsigned is_extern S
unsigned is_static S
} flags;

Fields are also used when access to individual bits of some part of memory is required.
An example might be access to the status bits of an 1/0 port.

11 MoreAdvanced Topicst

11.1 Comma Operator

exprl, expr2

evaluate exprl then evaluate expr2. The complete expresson has the vaue of
expr2.

The three separate code fragments below are equivalent, but increasing use of the
comma operator reduces the number of lines of code. Thisis not aways a good thing!

sum = O;
for (i =1; i <n; i++)
sum += i;
for (sum=0, i =1; i <n; i++)
sum += i;
for (sum=0, i =1; i <n; sum+=1i, i++);

OoucCs 46 October 1996

19.2/2

Programmingin C

11.2 Conditional Operator

exprl ? expr2 : expr3

Evaluate expr1

— if non-zero (true) evaluateexpr 2

— if zero (false) evaluateexpr 3
The value of the whole expression is the value of whichever of expr2 or expr3
was evaluated.

doubl e nmaxi mum(doubl e a, doubl e b)

return (a >b) ? a: b;

11.3 Name Spaces

C keeps four different name spaces for the following categories:

objects (variables and function parameters), function names, typedef names
and enum constants

labels (for got o)

struct, union and enum tags

struct and uni on members (actualy a different name space for each st ruct
and uni on)

Identifiers from one name space will not clash with names from another. Thus, it is
possible to have a function and a structure tag with the same name.

The following declaration islegal in ANSI C.

typedef struct fred {
int fred;
} fred,
/* create a new type nane fred, which is a structure whose

tag is fred, and which has an integer nenber called fred */

11.4 Type Qualifiers t

October 1996

The qudifiers const and vol atile can be added to the declaration of variables
(or function parameters) to indicate:

const the variable can be initidised, but cannot
subsequently be modified
vol atile the variable might change its value at any time (an

example might be a dtatus register) and therefore it
should not be optimised out of loops or expressions

47 OoucCs

Programmingin C 19.2/2

const is preferred over the use of symbolic congtants, as the constant object obeys
the scope rules in the same way as variables. But note that const vaues cannot be
used as a size specifier for an array, whilst a symbolic constant can.

#define N 10
const int M= 10;

int main()
int n[N; [* K */
int n{M; /* illegal */
}

When const is applied to an array, it indicates that the array elements cannot be
modified.

const doubl e pi =4 * atan(1.0);

const char usage[] = "USACGE ";

With pointer objects (see section 8) there are three aternatives for using const :

— aconstant pointer (Address to which it points cannot be modified)

— apointer to a constant object (Objects value cannot be changed)

— a constant pointer to a constant object (Neither the address or the value can
change)

Examples of these are given below:

char * const p;
/* pis a constant pointer to a char */
const char *q;
/* qis a pointer to constant char */
const char * const r;
/* r is a constant pointer to constant char */

11.5 FunctionsasParameters

OUCS

doubl e sun{double (*f)(int), int m int n)

The function sum has three parameters; the first is a pointer to a function that returns
a doubl e andtakesan int asaparameter. Oneway of specifying such a pointer is
by using the name of a function of the appropriate type. For example,

sun{xSquared, 0, 10);
where xSquar ed is a function which returns double. Within the function sum, the

function that was passed in as a parameter can be called in either of the following two
ways.

48 October 1996

19.2/2

Programmingin C

(*f)(m;
f(m;

The latter is not permitted in K&R C.

11.6 Preprocessor Macros

October 1996

You can use the preprocessor to create powerful macros.

#define identifier replacenent

For example:

#defi ne SQ(x) (() *(x))
#define MN(x,y) (((x) <(y)) ?(x) : (y))
#define Pl 3. 14159

In effect you can write often used simple functions as a macro rather than a function,

the advantage is speed (there is no function call overhead) and no type definition is
necessary (it can beresused for ints, doubles, floats etc.); the disadvantages
are that if you use the macro severa times, then the code will appear in your program

severa times, and there can be side effects caused by not cresting new copies of the
parameters (which is what happens when afunction is called).

When defining a macro there cannot be any spaces between the macro name and the
parameter list; when calling a macro no such restriction holds.

Macros need not take parameters, these are sometimes called symbolic constants.

Why are so many brackets needed? The brackets are required to give the correct result
when expressions are passed to the macro. For example:

#define SQ x)

_ ((x) " (x))
#define sq(x) x * X

SQa + b) P ((a+b)* (a+hb))
sqg(a + b) P a+b*a+hb

The second macro givestheresult a + a*b + b which is obvioudy not what was
intended.

The outer set of parentheses are required to protect the whole expression from the
vagaries of operator precedence:

17 SQa) P 1/ ((a) * (a))
1/ sq(a) P 1/ a* a = a/ a (exceptwhen a islarge)
49 OoucCs

Programming in C 19.2/2

The SQ macro till has one problem, which is shown by the following code:

SQ at++) b ((at+) * (at+t))

The variable a ends up being incremented twice! This is certainly a surprise to the
user of the macro. Watch out for any macro where the argument appears more than
once in the replacement text.

11.7 Assertions

OUCS

Assertions provide a good method of debugging. assert isamacro that tests to see
if the value of the parameter is true or fase. If the value is false, execution of the
program is hated, and a suitable error message is printed onto the standard error
stream.

Assertions are not availablein K&R C.

The following example from [2] shows the use of assertions to verify that the initial
conditions for a string copy operation are correct (si ze_t isthe ANS C type name
for values holding size information, on the Borland Turbo C compiler, used in class, it
isasynonym for unsi gned int):

#i ncl ude <assert. h>
char *CopySubStr(char *strTo, char *strFrom size t size)
char *strStart = strTo;

assert(strTo !'= NULL & strFrom!= NULL);
assert(size <= strlen(strFron);

while (size-- > 0)
*strTo++ = *strFrom++,
*strTo = "\0';

return (strStart);

If either assertion failed then an error message something like the following would be
displayed:

Assertion failed: file C\PROGRAMB\STR NG C, line 7
This may help you debug your programs more quickly. After you have finished

debugging, do not remove the assertions from your code, ingtead add the following
before thefile assert. h isincluded:

#def i ne NDEBUG

50 October 1996

19.2/2

Programmingin C

Thiswill turn off al the assertions, but it is then very easy to turn them back on again.
Alternatively if your compiler alows the specification of symbolic constants as a
command line parameter when compiling, add - DNDEBUG to the other compiler flags.

Do not use assertions to deal with Situations that can legitimately occur during the run
of your program; for example failure to open files. The following example is not the
way to use fopen:

int main()

{
FILE *fp;
char fil enane[50];

scanf ("%49s", fil enane) ;
fp = fopen(filenane, "r");
assert(fp !'= NULL);

If the file cannot be opened the program will halt. 1t would be better to give the user
the chance to enter the filename again.

12 Managing C programs

12.1 Separate Compilation

October 1996

By making use of definition and declaration of functions we can split a program into
sections in separate files. This alows us to manage large programs by breaking them
down into smaller, more easily understood sections. It also makes testing easier (when
a section is changed, you only have to retest that section and the files that depend on it)
and encourages re-use of code.

When a program is compiled it only requires the declaration of a function (the function
name, the number and type of parameters and the return type). Thisis enough to alow
the caling code to be checked and compiled. The statements in the function (the
definition) are only required when linking the program to form the excutable code.

However, the functions will need to be declared both in the file containing the functions
and in the calling code to alow them to be compiled separately. It is not necessary to

declare them twice though, a single header file is used for the declaration which then

can beincluded (usnga #i ncl ude <header. h> statement) in as many other files
as required. This also ensures consistency between declarations across the files.

In the following example three files are used:

Main program file mai n() function calling library functions
Function Definition file Code datements for the library functions
(definition)

Header file Declarations for the library functions
51 OoucCs

Programmingin C 19.2/2

/* mainprog.c */

#i ncl ude <funcdecl . h> /* get function declarations*/
mai n()
{
functionl(); /[* Call functionl */
function2(“Fred”); /[* Call function2 */
return O;
}

/* function.c */
/* define the functions */

int functionl(void)

{

printf(“A function froma separate file\n");
return O;

}

voi d function2(char *instring)

{
printf(“Hello %\n",instring);
}

/* funcdecl.h */
/* Function declarations */
int functionl(void);

voi d function2(char *instring);

12.2 Conditional Compilation

OUCS

It is posshle to make the compiler compile parts of a program only if certan
conditions are met. This is frequently used where the same program is to be used with
different C compilers (whether on the same computer or on a completely different
system). For example, the “standard” library function to determine if a particular
character existsin astring is strchr in Turbo C and on Unix C compilers, whilst
the equivalent function is i ndex in Zortech C. To produce a single source file which
is compilable under dl three systems, conditional compilation can be used.

#define UNI X O /* set to 1 the conpiler used */
#defi ne ZORTECH 0O /* all others should be */
#defi ne TURBO 1 /* set to 0 */

#if ZORTECH

i ndex(str, ch);
#el se

strchr(str, ch)
#endi f

52 October 1996

19.2/2

Programmingin C

12.3 Using Projectsin Borland C++

Projects are used in Borlands C/C++ compiler for DOS and Windows to manage
programs that consist of multiple source files. A project file tracks not only which
source and header files the project contains, but also which files depend on each other.
When a file in a project is changed and the project recompiled, the compiler can
recompile al the files that depend on that file, and thus check the effects of the change.
Files that do not depend on the edited file do not need to be recompiled and this saves
time when dealing with large projects.

Thefirgt step in creating a project is to create the source code and header files using an
editor and save them. Then create a project by selecting [Proj ect/ Open
Proj ect] and type afilename. A project window will open. To add files to the
project select [Proj ect/ Add to Project] and sdect the file required. The
order in which files are added to a project is important. A file B which depends on
another file A must be added after file A inthe list. Repest this step until al the files
have been added to the project. The project file can be saved using
[Project/ Save Project]. Once added to a project files can be edited by
double clicking on their entry in the project window.

To create an executable file use [Conpi | e/ Build Al l] whilein the project
window. The project will be compiled. If afile has changed, al the files depending on
that file will be recompiled automaticaly. Any errors will be reported and clicking on
the message will open the appropriate file for editing. Use [Proj ect/ Cl ose
Proj ect] toclosethe project file.

12.4 Unixand C

October 1996

The command to compile a C source file under Unix will depend on what C compiler
you have on your system. A typical example would be to usetlee command

cc programc -o runfile

The -o flag dlows the name of the executable file to be specified (the default is
a.out). Maketherunfile executableandrunitusing./runfile

Note: In order to use the mat h. h library under Unix the -1 m flag should be used
with the cc command.

In order to manage multiple files the make command is used to process a makefile.
These work in the same way as project files in Borland C. The make facility is
included in most C compilers , even those for DOS/Windows. The make command
reads the names of files and the instructions for compiling and linking them from afile
called a makefile. (See [9] for more information] or usean nake).

To use the nake facility under Unix create afile containing the following
- alist of al the the object filesto be linked after theun: instruction.
- alist of compile commands and the object filesto link.
- alist of the source files and header files.

Saveit as naekefil e or another filename.

53 OUCS

Programming in C 19.2/2

For example, to compile the files used in the example in the previous section the
makef i | e should contain:

run: function.o mainprog.o
cc function.o nainprog.o -0 run
function.c mainprog.c : funcdecl.h

Use the command nake to compile the file nakefile or make -f filenane if
using a name other than makefile.

The executable file will be called un. (See appendix C, [6])

12,5 Header filelocations

The location of the header file can be specified in the argument to the #i ncl ude
statement by using brackets or quotes.

< > Looksfor header fille in default path specified by your system.
“ “ Looksin location specified in the quotes

Examples

“funcdecl . h” Current working directory

“c:\cprog\funcdecl . h” Specifies adirectory in DOS or windows
13 Memory Usage

When a C program is loaded into memory, the program instructions (code) and the
external variables are usualy placed in different areas in memory. The part of memory
where the code exids is cdled the text area, and the memory where the externa
variables reside is called the data area. In addition automatic variables are alocated
gpace on the stack, and dynamic memory is adlocated on the heap.

13.1 Text Area

OUCS

This is the memory used for the executable instructions of the program. This memory
is usualy read-only, which means that programs cannot modify their own code.
Pointers to this region are permitted, in the form of pointersto functions, e.g.

int fred();
int main()

i nt (*funcPtr)() = fred;
/* funcPtr now points to fred() */

(*funcPtr)();
/* call the function that funcPtr points to */

return O;

}

54 October 1996

19.2/2

Programmingin C

The text area can sometimes be shared between severd versions of the same program,
which will help save memory. With the Unix operating system, shared text is the
default for every program.

13.2 Data Area

The data area is used for external static, external and internal static variables.
Externa variables are those defined outside of any function. Internal variables are
those defined inside functions. Static variables are those declared to be static.

Internal variables are of class aut o by default.

i nt fred;
staticint jim

void fred()
{

fl oat
static double

}

/*
/*

static */

automatic */
static */

13.3 The Stack

The stack is used for the values of actua function parameters, function return
addresses and internal automatic variables. When a function returns the stack space
used is marked as being free, but is not necessarily cleared, which can sometimes cause

October 1996

confusion, eg.

void fred()
{

i nt a,

a = 15;
}

void jim)
i{nt b;

printf("%\n",
}
int main()
{
fred();
jim);
return O;

}

b);

The printf calin jim will probably print 15 as that will have been the value
left in that memory location by theinternal variable a infunctionfred.

55

OUCS

Programmingin C 19.2/2
13.4 TheHeap

The heap is used to store dynamicaly objects in memory during the life of the
program. It is up to the programmer to allocate storage on the hesp for data, and to
relinquish that space when it is no longer required. Space allocated on the heap remains
in use until the end of the program or until freed with free() .

The hesp is most often used to store dynamic objects which grow (and shrink) during
the life of the program, such as linked lists and binary trees.

The library functions nmal loc() , calloc() and free() are used to dlocate
gpace on the heap and to freeit. cal l oc() fills the alocated memory space with
zeros, mal | oc() leavesit uninitialised.

A common problem with the hegp is to alocate space but then to lose the pointer which
gives access to that part of memory.

void fred()
{
char *ptr;

ptr = mal | oc(100);

/* allocate enough roomstore 100 chars */
scanf ("%", ptr);

/* read in a string and store it on the heap */

/* QOPS, just lost our pointer to the data, as ptr was
stored on the stack. The string is still on the heap
but we have no neans of accessing it! */

Another common mistake is to forget to free heap memory. In fact in the example
above it is quite likely that the programmer intended the string to act as a loca
variable, in which case the statement

free(ptr);

should be added at the end of the function.

13.5 Possble Problems

OUCS

Automatic variables are not implicitly initidlised, which would involve a run-time
overhead. External and static variables are initialised by the loader before the program
starts running.

Not al compilers place constant strings in the data area, some compilers place constant
grings into the text area which would make them unmodifiable (which ANSI C says
they must be anyway).

Duplicated constant strings are probably duplicated in memory, but most compilers
give the option to merge duplicated strings.

56 October 1996

19.2/2

Programmingin C

Externa and static variables cannot be initialised with values that are not known until
run time. Thisis because the data area isfilled by the loader before the program starts
running.

void fred(char *nsgQ)
{
i nt 1 = strlen(nsg); /* legal */
static int 12 = strlen(nsg); /* illegal */
}

Note that si zeof isan operator and can therefore be used to initidise any class of
variable.

14 C andthelBM PC £

14.1 Memory Organisation

October 1996

The IBM PC and compatibles al use the Intel 8086 family of processor. IBM XTs use
the 8086, IBM ATs use the 80286 and PS2s use the 80386. More recent IBM PC (and
compatible) computers use the 80486 and Pentium processors. Many of the features of
the five processors are the same, but the 80286, 80386, 80486 and Pentium offer
superior memory access modes over the 8086 (but they are compatible with the 8086
when they are put into real mode).

The 8086 family (with the exception of the Pentium) all use segmented memory when
using real mode. The memory of the computer is divided into 64k (64 * 1024) byte
chunks. Each of these 64k byte blocks is caled a segment. To access any given
memory location in your computer's memory you need to specify the address of the
segment and then the offset of the memory location within that given segment. The
designers of the 8086 decided that the way the segment address and offset address
should be combined to produce a physica memory address should be:

segnent << 4 + of f set

As the segment address and offset are specified by 16 bit integers, the resulting
physical address is 20 bits, which gives a range of addresses of exactly 1M (1024 *
1024) bytes. This is the maximum amount of memory that the 8086 can access. Some
IBM PCs do have more than IMB of memory, but some “trick” must be employed to
make it look as though there is sill only IMB of “real” memory. One technique
employed is to swap segments of memory to/from any memory over the IMB limit into
the real IMB address space. An example of this is the LIM (Lotus Intel Microsoft)
expanded memory system. Pentium processors use 32 bit Memory adressing, giving up
to 4GB of address space.

Mogt of this is of little interest to C programmers until they start writing large
programs. By large, | mean that either the amount of C code used is large or that the
total memory size of variables used is large (or both). Then you need to start thinking
about which memory model you should employ for any given C program.

57 OoucCs

Programmingin C 19.2/2

There are seven different memory models (but not al are avalable with some
compilers):

M odel Codesze Data size

tiny 64kB for code and data together

smdl 64kB 64kB

medium 1MB 64kB

compact 64kB 1IMB

large 1MB for code and data together (using unnormalised
pointers)

huge 1MB for code and data together (using normalised
pointers)

flat 4GB for code and data together

The flat memory model (with 4GB of data space) is available on the 80386 and higher
processors (including Pentium processors). Some DOS compilers are not able to use
the flat memory model - one that can is D.J. Delorie's port of the GNU C compiler,
gce. Windows based compilers will have an option alowing you to select the memory
model required.

The default memory modd for most MS-DOS C compilers is small. This is adequate
for most programs. However, you may find if you use large arrays in your program
that the compiler or linker will warn you that your total variable storage exceeds 64kB.
You should then recompile using the compact or large memory model. Changing from
one model to another is simply done by menu options Borland C or Zortech C, or by
command line arguments with command line compilers, see your compiler's
documentation for exact details.

With the tiny, smal and medium models near pointers (2 bytes) are used to address
variables. Near pointers store only the offset within the data segment. As there is only
one data segment this is al the information necessary. If the compact, large or huge
memory models are used then far pointers (4 bytes) are used to access variables. The
use of far pointers increases the size of the executable program and increases the time
taken to access any variable. Similarly, the tiny, smal and compact models use near
pointers for function cals, whilst the medium, large and huge models use far pointers.
This introduces a similar overhead on function calls. Therefore, if possible, use the
small memory moded!.

14.2 BIOS (Basic I/O System) Interrupts

OUCS

All MS-DOS computers have some basic routines stored in read-only memory in the
computer. These routines provide a mechanism for communicating with the keyboard
and screen, amongst others, and hence this part of memory is given the title BIOS
(Basic Input/Output System). The BIOS can be thought of as coming between our C
programs and the hardware of the computer itself. When weusea printf Statement
in our program, the compiler produces machine code which calls a subroutine in the
BIOS to make characters appear on the computer screen. So generally we need not
trouble oursalves with trying to understand exactly how the BIOS works.

58 October 1996

19.2/2

October 1996

Programmingin C

However, the BIOS provides many routines that your C compiler may not support.
Examples include communicating with serid/paralel ports, video card control
(scrolling, writing, reading etc.), disk access, keyboard access (read key states, is akey
waiting to be read, changing auto-repeat delay etc.) and many others. Remember C is
supposed to be a portable language, and the examples given above are all specific to
the IBM PC and the 8086 processor. Some versions of C do provide access to some of
these routines via library functions.

All MS-DOS C compilers do provide a mechanism for caling BIOS routines directly
though. Armed with a good guide to the BIOS routines (like Peter Norton's
Programmers Guide To The IBM PC [4]) we can make our PC sing and dance at
lightning speed.

| give some simple examples below, but for more information | suggest you consult [4].

The program below will move the cursor to any valid screen location - any subsequent
screen output will start at this point.

#i ncl ude <dos. h>

void CotoXY(int x, int y)
/* positions cursor at liney, colum x */

{
uni on REGS regs;

regs. h.ah = 2;

regs. h.dh =vy;

regs. h.dl = x;

regs. h.bh = 0;

int 6(0x10, ®s, ®s);
}

The i nt86 function copies the variable regs into the processor registers, executes
the BIOS interrupt (routine) specified —in thiscase 0x10 (the video interrupt) - and
then copies the processor registers into regs again. Modifying regs does not
change the processor registers directly.

The following program will set the attribute bits of a given file.

59 OUCS

Programmingin C 19.2/2

OUCS

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

int attrib(char *, int);
int nmain(int argc, char *argv[])

i nt attributes;

if (argc I'= 3)

{

fprintf(stderr, "USACE % attributes fil enane\n",
argv[0]);

fprintf(stderr, " eg: % 33 fred.c\n", argv[0]);

fprintf(stderr, " woul d set archive & read-
only ");

fprintf(stderr, " attributes of fred.c\n");

return 1;

}

if ((attributes = atoi (argv[1])) > OxFF)
/* atoi converts an ASCI| string to an int */

{

fprintf(stderr, "ERROR invalid attributes %\ n",
attributes);

return 2;

}
switch (attrib(argv[2],attributes))

case 0 : /* OK */
br eak;
case 2 : fprintf(stderr,"ERROR file % not
found\n",argv[2]);
return 3;
case 3 : fprintf(stderr,"ERROR path % not
found\n",argv[2]);
return 4
case 5 : fprintf(stderr,"ERROR access denied on file
%\ n",
argv[2]);
return 5;

return O;

}

int attrib(char *filename,int attributes)

uni on REGS regs;

regs.x.dx = (int) filenarme;
regs. x.cx = attributes;
regs.h.al = 1,

regs. h.ah = 67,

i nt 86(0x21, ®s, ®s);
return regs. X. ax;

}

60 October 1996

19.2/2 Programming in C
No real damage can be achieved with this program, except to hide files without
realising it (these can be discovered with asmal fi ndfirst /fi ndnext program or
with dir/ah in DOSS5 or higher).

14.3 DOS Interrupts

The MS-DOS operating system provides a great many subroutines for disk handling,
video card manipulation, keyboard access, file operations, time & date functions and

S0 on. These routines are generally at a higher level than the BIOS routines, but they
areinvoked in asimilar manner.

One visual representation of the inter-relation of the computer, the BIOS, DOS and our
C program isto think of the whole system as an onion, viz.

<< c

DOS

BIOS

Hardware

Figurel Layering of PC system architecture

The nearer the outside of the onion, the more machine independent our code should be,
the nearer the centre of the onion the more dependent our code is upon the computer we
are using. Thus we would expect printf to work satisfactorily on most machines
with a C compiler. We would hope that DOS interrupts will work in the same way on
al computers with the same version of MS-DOS, whereas BIOS interrupts will only
work correctly on computers with an IBM compatible BIOS system.

The following program shows the use of DOS interrupts to find files on a DOS disk.

October 1996 61 OoucCs

Programmingin C 19.2/2

OUCS

#i ncl ude <stdi o. h>
#i ncl ude <dos. h>

char *farstrcpy(char *dst, char far *src)
char *str = dst;
while (*dst++ = *src++)

return str;

}
int main()

union REGS inregs, outregs;

char str[13];
char *filespec = "c:*.c";
inregs.h.ah = 78; [/* 78 =find first function */

i nregs. x.dx = (unsigned)fil espec;
/* file specification */

0; /* file attributes */

i nregs. x. cx

int os(& nregs, &utregs);
/* call DOS "find first" interrupt */

while (outregs.x.cflag == 0)
printf("Found: ");

farstrcpy(str, MK FP(_psp, 128+30));

/* find first wites the matching file name 30 bytes
into the "disk transfer area", which itself is 128
bytes into the "program segnent prefix" or PSP */

printf("%\n", str);

i nregs. h.ah = 79;

[* 79 = find next func tion */
i nt dos(& nregs, &utregs);

/* call DOS "find next" interrupt */
}

return O;

}

Borland C compilers provide two library functions findfirst() and findnext ()

to find files matching a given path name and attribute, but these functions are merely
“front-ends’ to the two DOS interrupts.

findfirst() initialisesthe search and fills in a structure giving details of the first
matching file (if there is one). Repeated callsto fi ndnext () will find al remaining
matching files. Both functionsreturn - 1 if no match isfound.

int findfirst(const char *pathnane,
struct ffblk *ffblk, int attrib);

62 October 1996

19.2/2

October 1996

Programmingin C
int findnext(struct ffblk *ffblk);

The prototypesfor findfirst() and findnext() aeindir.h.

The structurecalled ffbl k isdefinedin dir.h tobe

struct ffblk /* struct used by findfirst() and findnext()

*/

{
char ff_reserved[21]; /* reserved by DCS */
char ff_attrib; /* attribute found */
i nt ff_ftime; [* file time */
i nt ff_fdate; /* file date */
long ff_fsize; /* fil e size */
char ff_narme; /* found file name */

b

Thefile attributes are set by MS-DOS (they are nothing to do with C). They are

Bit Hex Indicates

0 0x01 read only

1 0x02 hidden

2 0x04 system

3 0x08 volume label
4 0x10 sub-directory
5 0x20 archive bit

6 0x40 unused

7 0x80 unused

Each individual attribute is set by setting a particular bit of an 8 bit byte.

The rules for finding files with specific attributes are rather strange, again this is a
“feature’” of MS-DOS and has nothing to do with the functions provided by Borland or
other compiler manufacturers:

“Any combination of the hidden, system or directory attribute bits will match
normal files as well as those with the attributes given. If a volume label
atribute is used, then only the disk label will match. The archive and read-
only bits do not apply to the search.”

To find files with combinations of attributes the separate attributes must be bitwise
ORed together.

The following program will print the names of al C source files in the current
directory.

/* findfirst and findnext exanple */

#i ncl ude <stdi o. h>
#i ncl ude <dir. h>

63 OUCS

Programming in C 19.2/2

int mai n(voi d)

struct ffblk ffblk;
i nt done;

printf("Drectory listing of *.*\n");
done = findfirst("*.*", & fbl k, 0);
whil e (!done)

{

printf(" %\n", ffblk.ff_nane);
done = findnext (& f bl k);
}

return O;

}

Itisusually best to use the highest level interface available to a given operation, thet is:

ANSI C

Vendor specific C function
DOS interrupt

BIOS interrupt

The higher the level, the more protected you are from specific models of the IBM PC,
specific versions of MS-DOS and specific compilers. Choose an ANSI C function if at
all possible for the most portable solution.

14.4 DynamicLink Libraries(DLLYS)

A DLL is afile containing compiled functions which can be linked into your program
a run time. This makes your program smaller but does require the correct DLLsto be
available when your program runs. The declarations for functions in the common
DLLsare usualy supplied in atext file, and the appropriate declarations can be copied
into your code as required. The Windows operating system and applications written for
it make extensive use of DLL’s for common functions.

Some compilers dlow you to compile your code to a DLL file. The source code
language is not important, however variables and functions that are going to be used
from outside the DLL must have the correct declarations. Consult your compiler
documentation for further details on how to do this.

14.5 Windows Application Programming Interface (API)

OUCS

Windows is an operating system made up from a set of functions, messages, data
structures, data types and statements that work together to create applications that run
under the Windows operating system. The functions that make up the Windows API
can be used from within your own C programs. This involves copying the declarations
for the data and functions from the API into your own code before you can use them.
The declarations are usualy held in text files. For more information see the help
system for your compiler or the Microsoft Software Developers Kit (SDK) [7].

64 October 1996

19.2/2

Programmingin C

15 Why C?
15.1 Evolution of the C Language

The C Programming language was written by Dennis Ritchie of Bell Laboratories. The
first C compiler ran on a DEC PDP-11 computer running the Unix operating system.
Later versons of Unix were written ailmost entirely in C! The language was designed
by Ritchie to help him with hiswork on designing and implementing the Unix operating
system.

C is based on the languages BCPL and B, hence the name C. B was written in 1970 by
Ken Thompson for the first version of Unix, which ran on the PDP -7 computer. Many
of the characteristics of B and BCPL are found in C, but C differs from these two
languages in one very important respect. BCPL and B are typeless languages, the only
data type is the machine word. This data type is used directly or indirectly (via specia

operators) to store dl the data used in any program. In C there are severa “built-in”

datatypes(eg. char, int, float, doubl e) and any number of derived data types
(arrays, structures etc.).

C is a reatively “low level” language in that C has few operators which act on
collections of data such as arrays, strings and sets. Neither does the C programming
language have any way of communicating with the outside world - there are no input or
output routines in C. These operations are provided by a collection of standard library
functions which are available with every implementation of C (i.e. C compiler).

15.2 C and Operating Systems (esp. Unix)

October 1996

As mentioned above, the first C compiler was written for the Unix operating system.
The language was then used to write many of the plethora of Unix utilities. The logica
step, then, was to write the next version of Unix in C itself. This set the trend in
operating system development. Being able to write an operating system in a high level
language has obvious benefits in terms of development time, bug detection and
correction, and maintenance of the software. All versons of Unix since the
development of C have been written in C. Mogt versons of MS-DOS have been
written in C. Numerous other operating systems and environments have been devel oped
in C, even if parts are later converted to assembler. Examples include Microsoft
Windows, Atari TOS, Amiga OS etc.

Programmers writing systems programs in C have the entire computer under their
control. There is not one part of the computer memory they cannot access. All the bit
manipulation routines are available. Control over memory organisation can easily be
achieved. And yet they are writing in a high level language with al the benefits that
HLLs bring, like type checking, loops, branching, variables, arrays etc.

Goodbye assembler - hello C!

65 OUCS

Programmingin C 19.2/2
15.3 Comparison with Pascal And Fortran

Although C is not a typeless language as BCPL was, it does not have the strict type
checking that Pascal (or Algol 68) has. You will find as you write your own C
programs that the C compiler will not aways inform you about any mistakes you have
made regarding type mismatches.

There is no run-time checking of array subscripts and with non-ANSI C compilers
there is no verification of function argument types as there isin Pasca and Fortran.

Many Unix systems have |int a program that is designed to check C source files
removing the “fluff” such as errors, non-portable statements and inefficient code. 1 nt
is also available (commercialy) for other operating systems. 1int answers many of
the criticisms of C compilers given above, but |i nt isnot dways available.
Otherwise there are many similarities between C and Pasca & FORTRAN. Of course
there are differencess C and Pascal permit recurson whereas FORTRAN (pre
FORTRAN 90) does not; C and FORTRAN permit modular compilation whereas
standard Pascal does not (some, notably Turbo Pascal, do); C and Pascal have pointer
types whereas FORTRAN does not (FORTRAN 90 doed!); parameters to C functions
cannot be passed by reference as they can with Pascal and must be with FORTRAN.

Overdl C stands for speed and power. But it is not for the uninitiated. It can be avery
unforgiving language. The compiler believes that you know what you are doing; you
are in control! It's a bit like riding a bike, terrifying when you are being pushed aong
a the gtart, and you may fall off a few times. But once you have found your balance
and plucked up your courage you will find it much quicker to get to your destination!

15.4 Availability

The C language is dmost certainly available on more machines then any other
programming language. The fact that C is used to provide the operating system and
system tools for most new computers means (ipso facto) that a C compiler for that
machine has been developed (actually it doesn't — but it usually does).

15.5 Portability

With care your C programs can be written in such a way that the programs can be
eadly transferred from one C compiler to another. One problem when porting
programs to a new compiler or new machine are differences in the “standard” library
routines provided with the compiler. ANSI C does now specify a standard library that
all ANSI compilers must provide.

15.6 Efficiency

OUCS

Efficiency has many meanings. It could mean any of the following:

— ahility to produce programs which run quickly

— production of small executable programs

— being able to write a given algorithm in fewer program statements

66 October 1996

19.2/2
15.6.1 Speed

Programmingin C

As a direct result of the first C compiler being produced for the PDP -11 computer,
many of the C operators (especidly increment & decrement) convert to single
instructions in PDP-11 assembler. This meant that some C programs were faster than
equivalent Fortran programs on the PDP-11. To a certain extent this still holds, some
operations till match well with most processors. However, a good Fortran compiler
may well produce faster code than a C compiler, it redly al depends on the quality of
the compiler.

15.6.2 Size of Executable File

The calling mechanism that C uses for functions produces smaller and less complex
machine code than the Pascal or Fortran system does. Thus the overhead in caling
functions is reduced. Also, as described above, many C operators trandate to single
machine instructions. C programs are often smaller than Pascal or Fortran equivalents.

15.6.3 Size of Source Code

C has many tricks and short-cuts which alow the programmer to write in a couple of
lines something that would require 10 or more lines of Pascal. Whether this is of any
real advantage is debatable, as updating the program, either at a later date by the same
programmer or by another programmer entirely, becomes progressively more difficult
as more of the shortcuts are used. We will come to something of a compromise between
shorthand methods and readable and maintainable code.

15.7 Modular Programming and Libraries

C provides the ability to split large programming tasks into separate modules. Each
module can consist of a C source file which can be compiled separately from al the
other modules. With careful use of static external variables, a certain amount of
information hiding can be performed - but not in anything like the secure methods of
Modula-2, Ada or C++. To produce a single executable program the separately
compiled modules are linked together, dong with any library routines used, by a
gpecial program called (surprisingly enough) a linker. Fortran supports modular
compilation, 1SO standard Pascal does not. For amost all real applications this feature
isamust.

15.8 Applications

October 1996

As we have dready seen, C is the de facto standard for systems programming.
Virtually &l new operating systems are written in C. C is aso used for many
commercial programs where speed of program execution or the time taken to produce
the program is of vita importance. Examples include operating systems (Windows),
applications programs (wordprocessors, databases and spreadsheets) and so on. In the
good old days, parts or al of such programs would be written in assembler (the
original verson of the WordStar word processor was written entirely in assembler).
Now such programs are written in C, which means that development time (and
therefore cost) is significantly reduced.

67 OUCS

Programmingin C 19.2/2
15.9 Kernighan & RitchieC vs. ANSI C

Dennis Ritchie, the creator of C, is also the author (with Brian Kernighan) of, possibly,

the most important C text book The C Programming Language [1]. As there was not
an international standard for C, the appendix of the firgt edition of this book (C
Reference Manual) formed the de facto C “standard”. Compiler writers were not
obliged to keep to the behaviour specified in the book, but in the main they did. This
informal C standard is called Kernighan and Ritchie C or K&R C.

In 1989 the ANSI C standard was findised, and shortly after became an 1SO
(International Standards Organisation) international standard. C that complies with the
standard is caled ANS C. ANSI C offers many useful extensions to K&R C and
tightens up some loopholes. ANSI C is superior to K&R C, especidly in the area of
function declarations and prototypes.

15.10 Criticismsof C

Some of my own personal criticisms of the language are that C

— overuses operators

— dlows misuse of types

— can bedifficult to read

— can be good at (temporarily) killing PCs!

although some of these are addressed, partialy at least, by ANSI C.

16 Other Courses of I nterest

Object Oriented Programming in C++ introduces the differences between C and C++, and
the concepts and syntax of classes and objects. Most programs are written using Objects
and knowledge of C++ isawidely sought after skill in the programming market.

17 Bibliography

OUCS

The recommended book for the courseis:
— Programming with ANS C, Brian J. Holmes, DP Publications 1995.

For further reading, | suggest the following:

— The C Programming Language, Brian Kernighan & Dennis Ritchie, Prentice
Hall, Second Edition, 1988.

— C by Dissection, Al Kdley & Ira Pohl, Benjamin/Cummings, Second Edition,
1992

— C Trapsand Pitfalls, Andrew Koenig, Addison-Wesley, 1989

— Advanced C, Tips and Techniques, Paul Anderson & Gail Anderson, Hayden,
1988

— Writing Solid Code, Steve Maguire, Microsoft Press, 1993

68 October 1996

19.2/2

Programmingin C

The C Programming Language, Second Edition (often referred to as K&R?2) is an
excellent reference on ANSI C. It isclear and succinct. If you only want to buy one C
book, and you want it to last you a lifetime, get this one. However, K&R2 is not for
beginners, it is most useful if you have experience (perhaps a lot!) of programming in
another language.

18 Exercises

Example solutions to these exercises can be found in the OUCS guide 195
Programming in C - Exercise solutions [10].

Exercise 1 - “Hédloworld”

Type in the following program

#i ncl ude <stdio. h>
int nmain()

{

printf("Hello Wrld\n");
printf("Hello Wrld\n");
return O;

}

Then compile and run the program.

Exercise 2 - Run-TimeError

The following program has arun-time error init.

int main()

i nt X, y =0
x =11y,

return O;

}

Run the program to see what the effect of the error is. Rewrite the program without the
variable y, but keeping the error in the program. What happens when you try to
compile the program?

Exercise 3 - Increment (++) Operator

October 1996

Write a program containingthe line

a -= at+;

What happensto the value of a?

69 OUCS

Programmingin C 19.2/2

Exercise4-printf() and stdio.h

Write a C program that prints on the screen the words

Now is the time for all good men to come to the aid of their
country

— dlononeling
— onthreelines;
— inddeabox composed of * characters.

Exercise5- printf () Formats, Mixed Mode Arithmetic

The following program contains three statements which ether lead to error messages
or print unpredictable values. Correct them by changing the printf converson
characters and try to predict the output of the revised program. Run the program to
verify your predictions.

#i ncl ude <stdio. h>
int main()
i nt i = 2;

printf("%l\n", 8*%i/3);
printf("%d\n", 8.0%);
printf("%\n", 8*%i);
printf("%\n", 8*%i/3);
printf("%l\n", 8% 93);
printf("%\n", 8.0*i/3);
return O;

}

Exercise6- Using printf () Format Specifiers

Write a test program to find out whether the printf function truncates or rounds
when printing out a float with a fractional part.

Exercise 7- Using f or Loops

OUCS

Write a program that prints a table of powers. Thefirst few lines might look like this

i nt eger square cube quartic quintic
0 0 0 0 0
1 1 1 1 1
2 4 8 16 32
3 9 27 81 243
4 16 64 256 1024

70 October 1996

19.2/2 Programming in C

Exercise 8 - scanf (), Printing Numbers|n Different Bases

Write a program that reads in an integer and prints out the given integer in decimal,
octal and hexadecimal formats.

Exercise9- if ... el se Decisons

What gets printed?

#i ncl ude <stdi o. h>

int main()
i nt i, j;
i :j = 2;
if (i ==1)
if (j ==2)
printf("%\n", i =i +]j);
el se
printf("%\n", i =i - j);
printf("\n%", i);
return O;
}

Try it on paper first and then verify your answer with the computer.
Exercise10- whil e and for Loops

Rewrite (on paper) the following code as asingle for loop with a body that consists
of asmple (not a compound) statement.

i = 0;
while (c!=" " & c !="'"\n" && c !'="\t' & c != ECF)

word[i++] = c;
c = getchar ();

Exercise 11 - unsi gned i nt Type
Explain the output of the following program. What is the effect of changing the

declaration of x from unsi gned to int ?What isthe effect of changing the format
from % to %l.

October 1996 71 OuCs

Programmingin C 19.2/2

/* conpute powers of two */

#i ncl ude <stdi o. h>

int main()
i nt i = 0;
unsi gned x = 1;

while (i < 35)

printf("98d: %8u\n", i, X);
/* % is unsigned decinal format */
+4i ;
X *= 2;
}
X = -1;
printf("\n\nm nus one = 9Bd¥Bu\n\n", X, X);
return O;
}

Exercise 12 - get char (), putchar() and i f Statements

Write a program to check the proper pairing of braces. The program will have two
variables, one to keep track of the left braces and the other to keep track of the right
braces. They both start at value 0 and the appropriate one is incremented each time a
brace is encountered. If the right brace variable ever exceeds the value of the left brace
variable, the program inserts the character pair ?? at that point in the output. If, at
the end of the input file, the left brace variable is greater than the right brace variable,
the program should print a message that include the number of missing right braces as
aseriesof that many }s.Use getchar() and putchar() to do theinput/output.
What output is produced for theinput }{}{ ? Do you think that the output is correct?
Try to rectify the dgorithm so that the output is }??{}{ 1 missing } .

Exercise 13- get char () and ECF

Write a program that counts the number of blanks, tabs and newlines that are typed on
the keyboard. The program should terminate when the ECF character is read. The tab
characteris '\t' .

Exercise 14 - User Defined Functionsand scanf ()

OUCS

Write afunction Ft oQ(doubl e f) which converts the Fahrenheit temperature f into
the equivalent Celsius value. The function should return a value of type doubl e.
Use the formula:

c=5/9* (f-32)
Test your function with the temperatures 32°F (0°C), 212°F (100°C) and -40°F
(-40°C).

72 October 1996

19.2/2 Programming in C

Exercise 15 - User Defined Funtions, Prototypesand mat h. h

Write a function power (x, n) that will compute the n™ power of X, where X is a
double and nisan int. Asthe power will be an integer, repeated multiplication
using a for loop is one solution. Your function should return 1 when nis 0. Extend
your function to deal with negative n.

Exercise 16 - Passing Parametersto Functions By Reference
Write a function called swap that will exchange thetwo doubl e parameters given.
Test the function by assigning two different values to two variables and using the
function to swap the two vaues. Print out the values of the two variables after the
function call to check that the function has performed the correct action.

Swapping is used in many applications, but particularly in sorting. If you fed
adventurous write a bubble sort program.

Exercise 17 - #defi ne

Andrew Koenig gates in C Traps and Pitfalls [3] dtates that the following causes an
infinite loop on some systems. Can you work out why?

#define N 10
int main()

i nt i;

i nt a[N ;

for (i =0; i <= N i++)
a[i] = 0;

return O;

}

Exercise 18 -r egi st er Variables, rand() and stdlib.h

Write a program to store 1000 random numbers in an array. Use an integer as a loop
counter and to access the array. Print out the array. Time the program.

Try the program again but with the loop counter/array eement variable as a register
variable. Time the program again.

Weas there any difference in the timings?

Exercise 19- Pointer Variables, *(indirection) and &(address) Operators Strings. Arrays of
Characters

Write a program with the declarations

October 1996 73 OoucCs

Programmingin C 19.2/2

char a, b, ¢, *p, *q, *r;

and print out the locations that are assigned to al these variables by your compiler
(that is print the values of the expressions &a, &b, &, &p, & and & ;use % as
the conversion specifier for each expression).

What can you deduce about the sizesof char and pointer variables on your system?

Add the following statements to your program:

a="A;
b="8,
c="'C,
p = "hello";
g = "world";

and print out the values of the following expressions (the appropriate conversion
gpecifier is given aongside each expression):

%
%
%
p %
o} %
%
%

QT * O TOD

Exercise 20 - Pointersto NULL

What is printed and why?

#i ncl ude <stdi o. h>

int nmain()
char *pc = 0;
i nt *pi = 0;
doubl e *pd = 0;

printf (" 98dY8dYBd\ n98doBdY8d\ n",
pc + 1, pi +1, pd+ 1, pc + 3, pi +5 pd+7);

return O;

}

Exercise 21 - Strings: Arrays of Characters

Write a program which reads a word and prints the word reversed. Use an array of
characters to store the word read.

OuCs 74 October 1996

FREE EBOOKS, NOTES, VIDEOS &
PLACEMENT MATERIAL

For All Companies placement
Material

e TN [| |
o) B P aEy oS DAnss ot Lol dis o | em aw w o aew
I1.!:‘-.—:‘:) i‘_“'\-"”” | A S S B J.] e e B | GA od ud S

For CAT Exam Preparation
Material

)
ot = = = 1 — SR — -
(| 1 r 1 F_.\-l. |JnI i {jd '?c [o - f':‘-u_'
ALVE 2 R [Fe e Sy [l S,
:.._.-‘: Ut el e e B St '.-_-_:"p' e T

P ror GATE Exam Preparation

G ATE Material
P " ' S

Fa il a e & of & ol s Bl wll] [

LAY -4 B (e N | N N W Sl Vg

"<c-.i"' 53 ‘%—--1)r:-l Le LIAQODO2C D
— -
- S

For Engineering Books &
Material

o=l = g e b o oo l 7 om
I ﬂ\" '}-? L =N e Y] ‘g R
ALY 'y 5 L N R 5y ES ;
e S D ¥ B B o’

Codes of Following
Programming Languages

B
S F g
. B
N -
| 1
i
0

Language

r

@pvth
it B W B
MYy =l

l
u & | N 8 | .

= = I fad'B=1aala

103} YW AT

o 3 28 e

L.] L=V L=l 88

)les

19.2/2

Programmingin C

Exercise 22 - String Functionsin string. h gets() and strlen()

Write afunction called st rlen which will return the length of a string.

Exercise 23 - String Functions: st rcnp(), stri cnp(), t oupper ()

The C library function strcnp compares two strings. It is case sendtive. Write a
function called striccrp (string ignore case compare) which will compare two
strings ignoring case. The function should return 0 if the strings are the same,
otherwise the difference in value between the firgt two non-matching characters.

stricenp("Wrd", "wOrd") would return 0
striccnp("steve", "steven ") would return - 110
striccnp("box", "book") would return 9

You may like to use the C library function toupper in your compare function.
t oupper convertsitsint parameter to upper case. It returnsan i nt vaue.

t oupper (' c') returns ' C
t oupper (' C) returns ' C

[Warning: some older C libraries only guarantee that t oupper (char act er) works
if the argument is alower case letter.]

Finish off by writing a program that tests the function in several different ways. This
need only be agroup of function calls printing the result returned by the function.

Exercise 24 - User Defined String Functions

Write a function caled strchr which finds the first occurrence of a specific
character in a given string. The function should return a pointer to the occurrence of
the given character, or NULL if the character is not found.

strchr("hello world", 'I") would return "11 o worl d"
strchr("C progranmng", 'z') would return NULL

Test your function by calling it severa times with different literal strings (as shown
above) and printing the result returned by the function. Unexpected results can occur if
you try to print out a string which is actually a NULL pointer, so you will need to test
that function did not return NULL before you try to print the string.

Exercise 25 - User Defined String Functions, at oi ()

October 1996

The parameters passed to a program are aways strings. Sometimes you may wish to
write a program that takes as its parameter an integer value, eg. add 6 2 would call
a program called add which would add up al its parameters and print the result on the
screen.

75 OUCS

Programmingin C 19.2/2

Write afunction which takes a string (pointer to char) as a parameter and returns the
integer equivalent.
str2int("1658") would return thevalue 1658

To improve your program change the function to accept strings with aleading - sign to
indicate a negative number.

One last improvement might be to print a warning if the string represents a number
that isoutside therangeof an i nt .

The ANSI C function atoi () performs this task, do not use it to complete the
exercise!

Exercise 26 - get c() and putc()

Write getstring() and putstring() routines. They should use getc() and
put c() toread and write strings from a designated file.

Exercise 27 - Input from Files

OUCS

The standard way to list afile on the screen with MS-DOS is to type at the keyboard:

type fil enane

This can be extremely annoying as the text shoots past your eyes so fast that it is
impossibleto read it!

Write a program caled nore that asks for a name of afile to list on the screen and
then displays the file on the screen. Use get c() to read the characters in turn from
the file and then display the characters on the screen using put char () . Remember to
use an int to store the character read, as you will need to test the character against
the ECGF character.

Modify your program so that it displays the first 24 lines only of the screen on the
screen. It should then display a message like

-- Mre --

and wait for any key to be pressed. Once a key has been pressed the program should

display the next 24 lines of the file, and so on. You might like to use the get ch()

function which “bypasses’ the keyboard buffer. getch() is unique to MS-DOS
compilers, it is not part of ANS| C.

You can count the number of lines that have been printed by counting the number of
"\n' characters that have been displayed. This doesn't aways work — why?

76 October 1996

19.2/2

Programmingin C

Exercise 28 - Passing Parametersto mai n()

The MS-DOS utility echo prints its parameters. For example, typing

echo hello world
will produce the output:

hell o worl d

Write a program which will perform this task.

Exercise 29 - Using unl i nk() to Delete Files

The following program will delete afile from your directory (use with care!).

int nmain(int argc, char *argv[])

{
unlink(argv[1]);
return O;

}

Modify the program to check that a program parameter has been supplied, to print the
name of thefileit isjust about to delete, and to ask the user for confirmation before the
fileis deleted.

Modify the program so that it will accept a list of file names as parameters to the
program and then will step through each file in turn deleting the file if the user
confirms the delete.

Exercise 30 - Structuresand Arrays of Structures

Write a program that stores the names, two line addresses and ages of a group of
people. Each person should be stored in a structure. Use an array of such structures
to hold the data for the whole group. Write functions for reading a person's details
from the standard input stream and for printing a person.

Exercise 31 - Matrix Multiplication, t ypedef

October 1996

Matrix multiplication is defined as

a b‘ e f - a*e+tb*g a*f+b*h
c d |g h [c*e+td*g c*f+d*h

77 OoucCs

Programmingin C 19.2/2

Defineanew typecdled matrix with

typedef float natrix[2][2];

Write a function which will take two matrices as parameters and return the product
through a third parameter.

Exercise 32 - Preprocessor M acros

Define a macro swap(t, x, y) that interchanges two variables of the type
specified, eg.

i nt i =10,] = 64
float x =1.23, y =2.34
swap(int,i,j);
fswap(float, x,y);

Exer cise 33 - Pointersto Functions

OUCS

Write a function which will tabulate values of any given function from a given starting
value up to (and including) a given find value. The size of the each step from the
starting value to the final value should aso be a parameter of the function.

For example,

#define Pl 3. 14159

tab_func(sin, 0.0, P, PI/8.0);

would print

X f(x)
0. 0000 0. 0000
0. 3927 0. 3827
0.7854 0.7071
1.1781 0. 9239
1.5708 1. 0000
1. 9635 0. 9239
2. 3562 0.7071
2.7489 0. 3827
3. 1416 0. 0000

78 October 1996

19.2/2

19 Operator Precedence Table

October 1996

Operator
0O [->

I~ ++ --
* %
+ -

< >>

< <= > >=

- .(type) * & sizeof

?:
assignments

79

Programmingin C

Associativity
left
right
left
left
left
left
left
left
left
left
left
left
right
right
left

OUCS

